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Abstract

Recent progress in geospatial foundation mod-
els highlights the importance of learning general-
purpose representations for real-world locations,
particularly points-of-interest (POIs) where hu-
man activity concentrates. Existing approaches,
however, focus primarily on place identity derived
from static textual metadata, or learn represen-
tations tied to trajectory context, which capture
movement regularities rather than how places are
actually used (i.e., POI’s function). We argue
that POI function is a missing but essential sig-
nal for general POI representations. We intro-
duce Mobility-Embedded POIs (ME-POIs), a
framework that augments POI embeddings de-
rived, from language models with large-scale hu-
man mobility data to learn POI-centric, context-
independent representations grounded in real-
world usage. ME-POIS encodes individual vis-
its as temporally contextualized embeddings and
aligns them with learnable POI representations
via contrastive learning to capture usage patterns
across users and time. To address long-tail spar-
sity, we propose a novel mechanism that prop-
agates temporal visit patterns from nearby, fre-
quently visited POIs across multiple spatial scales.
We evaluate ME-POIS on five newly proposed
map enrichment tasks, testing its ability to capture
both the identity and function of POIs. Across all
tasks, augmenting text-based embeddings with
ME-POIS consistently outperforms both text-
only and mobility-only baselines. Notably, ME-
POIS trained on mobility data alone can surpass
text-only models on certain tasks, highlighting
that POI function is a critical component of accu-
rate and generalizable POI representations.
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1. Introduction
The increasing availability of large-scale geospatial data,
together with advances in machine learning, is reshaping our
ability to model and reason about urban environments (Lee
& Kang, 2015; Mai et al., 2024). In such environments,
points-of-interest (POIs), i.e., places that people visit during
their everyday life such as restaurants, metro stations, and
convenience stores, serve as core units of urban structure and
activity. Consequently, learning representations that capture
the intrinsic semantics of a place, including both its identity
(what a place is) and its function (how a place is used), is
fundamental to a range of geospatial applications, including
digital map maintenance, location recommendation, and
urban analytics (Siampou et al., 2025a).

To capture the identity of POIs, existing approaches pri-
marily focus on encoding the static attributes of places (Li
et al., 2022; 2023; Cheng et al., 2025). In particular, recent
methods leverage large language models (LLMs) to learn
POI representations, due to their ability to encode extensive
geographic and semantic knowledge from massive internet-
scale data (Manvi et al., 2024). These approaches have
demonstrated that with carefully designed prompts, often
augmented with map data (e.g., geo-coordinates, POI cate-
gory) and contextual neighborhood information (e.g., cate-
gories of closest POIs), one can effectively unlock the vast
latent geospatial knowledge embedded within these models.
However, this exclusive reliance on static signals can limit
performance in dynamic urban environments, where meta-
data can be missing (e.g., new POIs) or outdated. Further-
more, similar text does not always imply similar function.
For instance, two coffee shops on the same street can have
the same static attributes and neighborhood context, but
serve very different roles in practice: one may be a chain
characterized by quick, high-turnover visits, while the other
may be a local café where customers work and socialize
and spend more time per visit. By ignoring the dynamic
behavioral signals that distinguish places, static models can
conflate functionally distinct locations.

Meanwhile, prior work on mobility data has primarily used
sequence-based models to predict the next visited location
from surrounding trajectory context (Feng et al., 2017; Wan
et al., 2021; Lin et al., 2021; Xue et al., 2021; Hsu et al.,
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Figure 1. Illustration of ME-POIS. ME-POIS augment static
text-based POI representations with mobility-derived signals, to
learn POI embeddings that capture their identity and function.

2024). While effective at modeling movement regularities,
these learned POI embeddings are optimized for trajectory
prediction and therefore do not capture POI function. For
instance, a gym and a bar near the same office may both
be frequently visited after work; sequence-based models
encode their embeddings to reflect this shared post-work
usage, capturing similar movement patterns while missing
intrinsic differences such as operating hours or the type
of activity offered. As a result, the these representations
are inherently context-dependent, reflecting how a place
appears within specific sequences rather than providing a
universal, context-independent encoding of POI function.

In this work, we argue that POI function is a missing but
essential signal for general POI representations. We address
this by introducing Mobility-Embedded POIs (ME-POIs),
a framework that augments static POI embeddings derived
from text models with large-scale human mobility, produc-
ing representations that capture the intrinsic semantics of
each place, which we define as encoding both the POI’s
identity (what a place is) and its function (how it is used).
We present the main idea of the framework in Figure 1.
Starting from visit sequences, our approach encodes each
visit as a contextualized embedding that reflects the static
attributes of the POI and its temporal context within mobil-
ity patterns. These visit-level embeddings are then aligned
with a learnable POI embedding via contrastive learning,
ensuring that each POI representation incorporates aggre-
gated behavioral information over time and across users. To
address the common challenge of data sparsity for rarely
visited POIs, we propose a distribution transfer mechanism
that propagates temporal usage patterns from close by, fre-
quently visited POIs, across multiple spatial scales, to those
with limited data. This multi-scale strategy captures both
local and regional behavioral trends and yields high-quality
POI embeddings even in the long tail of the visit distribution.

We evaluate ME-POIs on two real-world large-scale mo-
bility datasets across five newly proposed tasks critical for
automated map enrichment and maintenance: weekly open-

ing hours prediction, permanent closure detection, visit in-
tent classification, weekly busyness estimation, and price
level classification. These tasks are strategically chosen
to assess both intrinsic semantics, evaluating the model’s
ability to capture static identity (e.g., price, opening hours)
as well as dynamic functional states (e.g., visit intent, busy-
ness, closure status). Moreover, these attributes are often
incomplete, outdated, or difficult to maintain at scale, un-
derscoring the practical value of our mobility-informed POI
representations. Across all benchmarks, augmenting strong
text-based embeddings, including those from OpenAI and
Gemini models, with ME-POIS yields consistent and sub-
stantial improvements, with gains of up to 16.2% for open-
ing hours, 81.9% for visit intent, 75.1% for price level, and
6.5% in F1 for permanent closure detection, as well as up to
a 24.7% reduction in MAE for busyness estimation. These
results demonstrate that single POI embeddings learned by
ME-POIS can support a diverse set of downstream tasks,
highlighting the versatility of our framework for enriching
POI representations. Notably, ME-POIS outperforms all
mobility-based baselines both with and without explicit tex-
tual POI semantics, with the latter even surpassing some
text-based embeddings on certain tasks (e.g., GEMINI em-
beddings for price level classification), further emphasizing
the strength of our approach. In sum, our contributions are:

• We propose Mobility-Embedded POIs (ME-POIs), a
framework that augments static, text-based POI embeddings
with mobility-derived representations.
• We introduce a new mobility-based objective to learn POI-
centric embeddings that encode POI identity and function
from visit sequences, rather than local trajectory transitions.
• We propose a contrastive learning paradigm that aligns
visit-level embeddings with learnable POI embeddings, and
a novel multi-scale visit distribution transfer mechanism to
address sparsity in long-tail, rarely visited POIs.
• We evaluate ME-POIS on a set of map enrichment tasks,
demonstrating consistent improvements over both text- and
mobility-based baselines.

2. Problem Formulation
Let P = {p1, . . . , pN} denote a set of POIs within a geo-
graphic region. Each POI p ∈ P is associated with a loca-
tion xp ∈ R2 and textual metadata (e.g., description), from
which we obtain a static embedding zstatic

p ∈ Rd using a pre-
trained text embedding model. Let, also, S = {s1, . . . , sK}
denote a collection of user visit sequences, where each se-
quence sk = (v1, . . . , vLk

) is temporally ordered. Each
visit is defined as vi = (pi, t

a
i , t

d
i ), where pi ∈ P is the

visited POI and tai , t
d
i ∈ R are arrival and departure times.

Objective. Given static POI embeddings {zstatic
p }p∈P and

mobility data S, our goal is to learn a POI-centric repre-
sentation zME

p ∈ Rd for each p ∈ P that integrates textual
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Figure 2. Overview of ME-POIS pretraining. The framework includes: (i) a transformer-based visit sequence encoder, (ii) contrastive
alignment of contextualized visits (h) with global POI embeddings (zME

p ) to capture usage patterns, (iii) multi-scale distribution transfer to
propagate temporal visit information to under-visited POIs (ps), (iv) direct supervision on anchor POIs (pa) to regularize embeddings via
visit distribution prediction, and (v) an auxiliary text-alignment objective to ground POI embeddings (zME

p ) in textual semantics (ztext
p ).

semantics with longitudinal visitation patterns. Formally,
we aim to learn a function f such that

zME
p = f

(
zstatic
p ,Sp

)
, (1)

where Sp ⊆ S denotes the subset of visit sequences contain-
ing visits to p. The resulting embeddings encode the POIs
intrinsic semantics, including their identity and function.

3. Methodology
In this section, we present the components our ME-POIs
framework, as illustrated in Figure 2.

3.1. Visit Sequence Encoder

Visit Feature Encoding. Given a visit sequence s ∈ S,
each visit vi ∈ s is characterized by three attributes de-
scribing a user’s interaction with a POI pi: the geograph-
ical coordinates xpi

∈ R2, and the arrival and departure
times tai , t

d
i ∈ R. We transform each attribute into a

fixed-dimensional vector using three factorized encoders.
Specifically, we utilize the multiscale location encoder
from Space2Vec (Mai et al., 2020), which we denote as
λθ : R2 → Rdl , to capture spatial relationships at mul-
tiple scales from local neighborhoods to broader regional
context1. We further use Time2Vec (Kazemi et al., 2019)
to encode arrival and departure times separately, denoted
as gη, gζ : R → Rdt , which helps us capture the distinct
temporal patterns in visit start times and durations.

To preserve the distinct contributions of each attribute in the
visit representation, we explicitly concatenate their encod-
ings to form the initial vector for vi:

h̃
(0)
i = [λθ(xi) ∥ gη(tai ) ∥ gζ(tdi )] ∈ Rdh , (2)

1More advanced location encoders, such as Poly2Vec (Siampou
et al., 2025b), could be used when POIs are represented as richer
spatial geometries (e.g., building footprints as polygons).

where dh = dl+2dt and [· ∥ ·] denotes vector concatenation.

Sequence Modeling. After encoding each visit into a fixed-
dimensional vector, we aim to contextualize these repre-
sentations to capture dependencies and patterns within the
visit sequence, which are essential for understanding the
functional usage of POIs. For this, we apply a multi-layer
Transformer encoder model (Vaswani et al., 2017), which is
a standard choice for capturing temporal and co-visitation
patterns in trajectory modeling (Xue et al., 2021; Hsu et al.,
2024). To preserve the temporal order of visits within a
sequence of visit embeddings, H̃(0) = (h̃

(0)
1 , . . . , h̃

(0)
L ), we

first augment the sequence with a fixed sinusoidal positional
encoding PE(i) as follows:

h
(0)
i = h̃

(0)
i + PE(i) (3)

The position-aware embeddings H(0) = (h
(0)
1 , . . . , h

(0)
L )

are then fed into the Transformer. Each layer consists of
multi-head self-attention followed by a feedforward network
(FFN) with residual connections and layer normalization:

H ′ = LayerNorm(H(0) + MultiHead(H(0))) (4)

H(1) = LayerNorm(H ′ + FFN(H ′)) (5)

Multi-head attention is computed as:

MultiHead(H) = [head1∥ · · · ∥headj ]WO, (6)

headi = Softmax
(HWQ

i (HWK
i )⊤√

dk

)
HWV

i ,

(7)

where WQ
i ,WK

i ,WV
i ∈ Rdh×dk and WO ∈ Rjdk×dh are

learnable parameters. After N stacked layers, the Trans-
former produces the final contextualized visit embeddings:

H = (h1, . . . , hL), hi ∈ Rdh (8)
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3.2. Global POI Alignment via Contrastive Learning

While the sequence encoder captures transient movement
dynamics, our ultimate goal is to learn global, context-
independent embeddings for each POI. To do so, we de-
fine a learnable embedding matrix ZME ∈ R|P|×dh , where
each vector zME

p serves as the global prototype for POI p.
Formally, given a contextualized visit embedding hi cor-
responding to a visit to POI p, we aim to align hi with
its prototype zME

p , while distinguishing it from the proto-
types of other POIs. We achieve this by minimizing the
InfoNCE loss (Oord et al., 2018; Radford et al., 2021), treat-
ing (hi, z

ME
p ) as a positive pair and the prototypes of other

POIs in the current minibatch as negatives:

LME-POI(hi, z
ME
p ) = − log

exp(sim(hi, z
ME
p )/τ)∑

p′∈Pbatch

exp(sim(hi, zME
p′ )/τ)

,

(9)
where sim(a, b) = a⊤b

∥a∥∥b∥ denotes cosine similarity and τ

is a temperature hyperparameter.

Intuitively, this alignment encourages the global prototype
to act as a functional centroid, aggregating usage patterns
across diverse visits while suppressing the noise inherent in
individual user schedules. This process naturally captures
both the POI’s function, derived from consistent temporal
behaviors (e.g., dwell times, daily cycles), and its unique
identity, as the contrastive objective forces the representa-
tion to be distinct from even spatially proximate neighbors.

3.3. Multi-Scale Distribution Transfer for Sparse POIs

A common challenge in modeling human mobility is the
long-tail distribution of visit frequencies. In practice, only
a small fraction of POIs is frequently observed in the data,
whereas most locations record insufficient visits (Chen et al.,
2021; Xu et al., 2024). This data imbalance limits the effec-
tiveness of our contrastive learning module, since the global
prototypes of sparsely visited POIs are updated from only a
handful of visits. As a result, their embeddings may fail to
reliably reflect their underlying functional semantics.

To address this issue, we introduce a multi-scale visit distri-
bution transfer mechanism that injects structured temporal
priors into sparse POI embeddings by leveraging visitation
patterns from nearby, data-rich locations. This choice is mo-
tivated by our observation that human mobility is strongly
guided by spatial context: POIs of the same urban environ-
ment tend to exhibit similar activity patterns (e.g., similar
peak hours), driven by shared land use, accessibility, com-
muting flows, and surrounding population dynamics. Thus,
transferring knowledge from frequent POIs to their sparse
neighbors can stabilize the latter’s embeddings.

Formally, we partition the POIs into a set of anchor POIs,
Panchor, consisting of the top-k POIs with the highest total

visit counts, and a set of sparse POIs, denoted Psparse. For
each anchor POI pa ∈ Panchor, we construct an empirical
visit distribution rpa ∈ ∆T by aggregating visits into T
fixed temporal bins (e.g., hourly slots over a week) and
normalizing the resulting histogram. These distributions
serve as stable temporal priors for the transfer process.

However, simply transferring priors from the nearest an-
chor is insufficient, as urban dynamics exist at multiple
resolutions. Fine-grained spatial proximity captures local-
ized effects, such as neighboring establishments sharing
similar peak hours, while broader scales reflect neighbor-
hood and district-level patterns (e.g., a commercial area).
To capture these hierarchical dependencies, we employ a
multi-scale kernel mechanism parameterized by M band-
widths {σm}Mm=1. For a sparse POI ps ∈ Psparse, the spatial
influence weight of an anchor pa at scale m is computed
using a normalized Gaussian kernel:

α(m)
ps,pa

=
exp

(
−∥xps−xpa∥

2

2σ2
m

)
∑

p′
a∈Panchor

exp
(
−

∥xps−xp′a
∥2

2σ2
m

) , (10)

where xps
and xpa

denote the coordinates of the sparse POI
and anchor, respectively.

We then estimate the expected temporal activity for each
sparse POI ps ∈ Psparse by aggregating the empirical distri-
butions of anchor POIs across multiple spatial scales:

r̃ps
=

1

M

M∑
m=1

∑
pa∈Panchor

α(m)
ps,pa

· rpa
, (11)

To inject this temporal prior into the embedding space, we
require the learned prototype zME

ps
to predict a visitation

distribution. For this, we map zME
ps

through a multi-layer
perceptron followed by a softmax function:

qθ(ps) = softmax(MLP(zME
ps

)), (12)

where MLP(·) denotes a neural network with one hidden
layer and ReLU activation.

Finally, we train the model to align the predicted distribution
qθ(ps) with the transferred prior r̃ps

using an auxiliary KL
divergence loss:

LKL-sparse =
∑

ps∈Psparse

KL (r̃ps
∥ qθ(ps)) (13)

3.4. Direct Supervision for Anchor POIs

We also directly supervise the embeddings of anchor POIs to
ensure that their global prototypes faithfully encode empiri-
cally observed temporal usage patterns throughout training.
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Following the same prediction mechanism used for sparse
POIs in Section 3.3, we map each prototype zME

pa
of an

anchor POI pa ∈ Panchor to a visitation distribution:

qθ(pa) = softmax(MLP(zME
pa

)), (14)

where MLP(·) denotes the same network used for sparse
POIs. We then minimize the KL divergence between the
empirical and predicted distributions:

LKL-anchor =
∑

pa∈Panchor

KL (rpa ∥ qθ(pa)) (15)

3.5. Alignment with Text Embeddings

Our learned mobility embeddings are designed to enrich
static POI text embeddings. To extract rich semantic and
spatial information from text, we follow the prompt de-
sign methodology introduced in GeoLLM (Manvi et al.,
2024), which demonstrates how to construct effective LLM
prompts to extract geospatial knowledge. Specifically, we
describe each POI using both its intrinsic attributes (i.e.,
coordinates, category, address) and local neighborhood con-
text (i.e., the direction and distance of nearby POIs). This
approach ensures that the resulting text embeddings encode
meaningful geospatial and contextual information, which
we then align with our mobility embeddings. Examples of
the constructed prompts are provided in Appendix A.2.

To encourage the ME-POIs embeddings zME
p ∈ Rdh to cap-

ture complementary semantic information, we project the
text embeddings ztext

p ∈ Rdu into the mobility embedding
space via a linear mapping W ∈ Rdh×du . We then max-
imize the cosine similarity between the mobility and pro-
jected text embeddings. This objective encourages zME

p to
incorporate semantic signals from textual descriptions while
preserving information derived from mobility patterns:

Ltext-align =
∑
p∈P

[
1− cos

(
zME
p , Wztext

p

)]
, (16)

where cos(·, ·) denotes cosine similarity.

3.6. Model Optimization

Pretraining. We pretrain the model by jointly optimizing a
primary contrastive objective, LME-POI, together with three
auxiliary losses that (i) regularize anchor POIs, (ii) transfer
temporal patterns to sparse POIs, and (iii) align mobility
embeddings with text semantics:

L = LME-POI + λa LKL-anchor + λs LKL-sparse + λt Ltext-align,
(17)

where λa, λs, and λt weight the auxiliary terms.

Fine-Tuning. For downstream tasks, we freeze the pre-
trained embeddings and train lightweight task-specific heads.

For each POI p, the mobility embedding zME
p and text em-

bedding ztext
p are independently projected via small MLPs,

concatenated, and passed to a task-specific prediction head:

ŷp = MLPhead
(
[MLPp(z

ME
p ) ∥ MLPt(z

text
p )]

)
(18)

All MLPs consist of one hidden layer with ReLU activation.

4. Experiments
4.1. Experimental Setup

Datasets. We use two large-scale, anonymized human mo-
bility datasets from Veraset2, covering Los Angeles County
and Houston. The first spans one year, while the second cov-
ers 20 days. More details are provided in Appendix A.1.1.

Baselines. We compare ME-POIS against state-of-the-art
text and mobility-based baselines. For text embeddings, we
use MPNET (Song et al., 2020), E5 (Wang et al., 2022),
GTR-T5 (Ni et al., 2022), NOMIC (Nussbaum et al., 2024),
OPENAI, and GEMINI. For mobility-based, we consider
SKIP-GRAM (Mikolov et al., 2013), POI2VEC (Feng et al.,
2017), GEO-TEASER (Zhao et al., 2017), TALE (Wan
et al., 2021), HIER (Shimizu et al., 2020), CTLE (Lin
et al., 2021), DEEPMOVE (Feng et al., 2018), STAN (Luo
et al., 2021), GRAPH-FLASHBACK (Rao et al., 2022), GET-
NEXT (Yang et al., 2022), and TRAJGPT (Hsu et al., 2024).
All models are evaluated via frozen-embedding probing.

Downstream Tasks. We evaluate our approach on five map
enrichment tasks: (i) multi-label classification of weekly
open hours, (ii) binary classification of permanent closure
status, (iii) visit intent classification, derived from aggre-
gated navigation queries and discretized into four classes
from least to most popular, (iv) prediction of busyness, as a
weekly average of hourly activity levels, and (v) price level
classification. Ground-truth labels for opening hours and
permanent closures are obtained from SafeGraph3, while
the remaining are sourced from Google Maps. Permanent
closure is evaluated only on Los Angeles due to limited label
quality in Houston. For each task, we report two standard
evaluation metrics appropriate to the prediction objective.
Additional task details are provided in Appendix A.1.2.

4.2. Main Results

Augmentation of text-based models. Tables 1 and 2 report
the performance of text embedding models with and with-
out ME-POIS on the Los Angeles and Houston datasets.
Across both datasets and all tasks, adding ME-POIS con-
sistently improves performance of text models, often by a
substantial margin. The improvements are particularly evi-
dent for dynamic, function-focused tasks, with up to 81.9%

2https://www.veraset.com
3https://www.safegraph.com/
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Table 1. Performance of text-based baselines in Los Angeles. Results report the mean over 5 runs. Relative improvements from adding
ME-POIS are highlighted next to each metric.

Method Open Hours Permanent Closure Visit Intent Busyness Price Level
(↑) F1 / (↑) AUROC (↑) F1 / (↑) AUPRC (↑) F1 / (↑) AUPRC (↓) MAE / (↑) Cosine (↑) Accuracy / (↑) F1

ME-POIS (w/o Ltext-align) 0.540 / 0.703 0.757 / 0.154 0.263 / 0.337 0.159 / 0.878 0.600 / 0.308

MPNET 0.542 / 0.726 0.736 / 0.172 0.270 / 0.382 0.171 / 0.873 0.615 / 0.306
MPNET + ME-POIs 0.628(↑15.8%) / 0.783(↑7.8%) 0.766(↑4.1%) / 0.181(↑5.2%) 0.352(↑30.3%) / 0.410(↑7.3%) 0.138(↓19.2%) / 0.896(↑2.6%) 0.662(↑7.6%) / 0.337(↑10.1%)

E5 0.540 / 0.722 0.738 / 0.176 0.184 / 0.344 0.169 / 0.872 0.521 / 0.189
E5 + ME-POIs 0.601(↑11.3%) / 0.751(↑4.0%) 0.786(↑6.5%) / 0.185(↑5.1%) 0.330(↑79.4%) / 0.391(↑13.6%) 0.142(↓15.9%) / 0.892(↑2.2%) 0.632(↑21.3%) / 0.322(↑70.4%)

GTR-T5 0.547 / 0.721 0.767 / 0.173 0.241 / 0.365 0.168 / 0.873 0.586 / 0.278
GTR-T5 + ME-POIs 0.618(↑12.9%) / 0.767(↑6.4%) 0.774(↑0.9%) / 0.178(↑2.9%) 0.332(↑37.8%) / 0.398(↑9.0%) 0.141(↓16.0%) / 0.894(↑2.4%) 0.654(↑11.6%) / 0.334(↑20.1%)

NOMIC 0.539 / 0.723 0.749 / 0.173 0.230 / 0.361 0.168 / 0.873 0.614 / 0.297
NOMIC + ME-POIs 0.619(↑14.8%) / 0.771(↑6.6%) 0.762(↑1.7%) / 0.182(↑5.2%) 0.332(↑44.4%) / 0.403(↑11.6%) 0.143(↓14.8%) / 0.894(↑2.4%) 0.659(↑7.3%) / 0.336(↑13.1%)

OPENAI-SMALL 0.547 / 0.732 0.695 / 0.184 0.260 / 0.390 0.167 / 0.874 0.637 / 0.320
OPENAI-SMALL + ME-POIs 0.632(↑15.5%) / 0.780(↑6.6%) 0.696(↑0.1%) / 0.186(↑1.2%) 0.353(↑35.8%) / 0.414(↑6.1%) 0.138(↓17.3%) / 0.896(↑2.5%) 0.675(↑4.3%) / 0.345(↑7.8%)

OPENAI-LARGE 0.548 / 0.738 0.750 / 0.181 0.271 / 0.404 0.169 / 0.873 0.654 / 0.329
OPENAI-LARGE + ME-POIs 0.637(↑16.2%) / 0.783(↑6.1%) 0.770(↑2.7%) / 0.185(↑2.2%) 0.368(↑35.8%) / 0.435(↑7.6%) 0.136(↓19.5%) / 0.897(↑2.7%) 0.684(↑4.6%) / 0.350(↑6.4%)

GEMINI 0.548 / 0.716 0.756 / 0.181 0.199 / 0.367 0.190 / 0.856 0.559 / 0.234
GEMINI + ME-POIs 0.613(↑11.9%) / 0.761(↑6.3%) 0.753(↓0.4%) / 0.185(↑2.2%) 0.362(↑81.9%) / 0.423(↑15.2%) 0.143(↓24.7%) / 0.894(↑4.4%) 0.672(↑20.2%) / 0.345(↑47.4%)

Table 2. Performance of text-based baselines in Houston. Results report the mean over 5 runs. Relative improvements from adding
ME-POIS are highlighted next to each metric.

Method Open Hours Visit Intent Busyness Price Level
(↑) F1 / (↑) AUROC (↑) F1 / (↑) AUPRC (↓) MAE / (↑) Cosine (↑) Accuracy / (↑) F1

ME-POIS (w/o Ltext-align) 0.519 / 0.604 0.270 / 0.314 0.182 / 0.867 0.564 / 0.276

MPNET 0.653 / 0.739 0.331 / 0.416 0.164 / 0.886 0.599 / 0.248
MPNET + ME-POIs 0.725(↑11.0%) / 0.803(↑8.6%) 0.374(↑12.9%) / 0.440(↑5.7%) 0.137(↓16.4%) / 0.903(↑1.9%) 0.687(↑14.6%) / 0.344(↑38.7%)

E5 0.640 / 0.754 0.229 / 0.389 0.163 / 0.886 0.549 / 0.177
E5 + ME-POIs 0.690(↑7.8%) / 0.780(↑3.4%) 0.368(↑60.7%) / 0.412(↑5.9%) 0.143(↓12.2%) / 0.901(↑1.6%) 0.635(↑15.6%) / 0.300(↑69.4%)

GTR-T5 0.624 / 0.742 0.257 / 0.397 0.162 / 0.887 0.549 / 0.177
GTR-T5 + ME-POIs 0.713(↑14.2%) / 0.782(↑3.7%) 0.370(↑61.5%) / 0.419(↑5.5%) 0.141(↓12.9%) / 0.902(↑1.6%) 0.645(↑17.4%) / 0.310(↑75.1%)

NOMIC 0.721 / 0.806 0.268 / 0.383 0.162 / 0.887 0.578 / 0.212
NOMIC + ME-POIs 0.738(↑2.3%) / 0.813(↑0.8%) 0.366(↑36.5%) / 0.410(↑7.0%) 0.143(↓11.7%) / 0.901(↑1.5%) 0.667(↑15.4%) / 0.326(↑53.7%)

OPENAI-SMALL 0.654 / 0.761 0.314 / 0.424 0.161 / 0.887 0.595 / 0.233
OPENAI-SMALL + ME-POIs 0.743(↑13.6%) / 0.805(↑5.7%) 0.398(↑26.7%) / 0.454(↑7.0%) 0.137(↓14.9%) / 0.904(↑1.9%) 0.729(↑22.5%) / 0.367(↑57.5%)

OPENAI-LARGE 0.702 / 0.788 0.345 / 0.443 0.162 / 0.888 0.601 / 0.244
OPENAI-LARGE + ME-POIs 0.761(↑8.40%) / 0.824(↑4.57%) 0.412(↑19.42%) / 0.475(↑7.2%) 0.136(↓16.0%) / 0.906(↑2.0%) 0.758(↑26.12%) / 0.383(↑56.97%)

GEMINI 0.676 / 0.756 0.268 / 0.419 0.185 / 0.866 0.549 / 0.177
GEMINI + ME-POIs 0.741(↑9.62%) / 0.801(↑5.95%) 0.392(↑46.27%) / 0.445(↑6.2%) 0.142(↓23.2%) / 0.901(↑4.0%) 0.634(↑15.48%) / 0.304(↑71.75%)

and 6.5% increases in F1 for visit intent and permanent
closure, respectively, and a 24.7% reduction in MAE for
busyness. This aligns with our motivation: while strong text
embedding baselines can capture the descriptive attributes
of a place and often infer some coarse behavioral signals
from web sources, they do not encode how places are ac-
tually used over time by people in their everyday activities.
Interestingly, the identity-focused tasks of weekly opening
hours and price level also show notable improvements, with
F1 increasing up to 15.8% for opening hours and 75.1%
for price level classification. While text embeddings cap-
ture attribute-related information, this knowledge is often
incomplete, and biased toward popular POIs that are well-
documented. By incorporating mobility, ME-POIS refine
these representations, anchoring them to real-world visita-
tion patterns over time and across users, which helps disam-
biguate POIs and fill gaps in textual metadata. Notably, even
ME-POIS without any text information (the ME-POIS w/o
Ltext-align variant) outperforms strong text-only models in
some cases, such as GEMINI on price level classification,

highlighting the rich signal contained in real-world mobility.
Overall, these findings emphasize that encoding the intrinsic
semantics of POIs (including both their identity and func-
tion) is essential for effective POI representations, and that
integrating mobility with text embeddings produces more
informative and generalizable POI embeddings.

Comparison to mobility-based baselines. We evaluate
state-of-the-art mobility baselines against ME-POIS on the
Los Angeles and Houston datasets, as reported in Tables 3
and 4. ME-POIS consistently outperform all baselines
across both dynamic and static tasks. Notably, the second-
best performance is achieved by ME-POIS trained without
text alignment (the ME-POIS w/o Ltext-align variant), indi-
cating that the improvements arise primarily from our archi-
tecture rather than textual metadata. Sine mobility-based
models focus on capturing user movement patterns for next-
location prediction, they fail to encode POI identity and
function, limiting their effectiveness on our tasks. In con-
trast, ME-POIS explicitly aggregates information across
visits through its contrastive alignment module, directly
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Table 3. Comparison to mobility-based models in Los Angeles. Results averaged over 5 runs. Best and second best values are highlighted.

Method Open Hours Permanent Closure Visit Intent Busyness Price Level
(↑) F1 / (↑) AUROC (↑) F1 / (↑) AUPRC (↑) F1 / (↑) AUPRC (↓) MAE / (↑) Cosine (↑) Accuracy / (↑) F1

SKIP-GRAM 0.462 / 0.520 0.649 / 0.123 0.183 / 0.268 0.171 / 0.847 0.564 / 0.286
POI2VEC 0.460 / 0.482 0.564 / 0.112 0.181 / 0.263 0.224 / 0.812 0.530 / 0.249
GEO-TEASER 0.460 / 0.470 0.448 / 0.116 0.185 / 0.266 0.219 / 0.818 0.511 / 0.194
TALE 0.461 / 0.464 0.375 / 0.102 0.183 / 0.248 0.233 / 0.801 0.504 / 0.189
HIER 0.473 / 0.547 0.660 / 0.119 0.183 / 0.291 0.182 / 0.859 0.529 / 0.229
CTLE 0.463 / 0.511 0.115 / 0.098 0.179 / 0.249 0.192 / 0.852 0.488 / 0.244

DEEPMOVE 0.460 / 0.484 0.370 / 0.110 0.183 / 0.253 0.249 / 0.779 0.503 / 0.224
STAN 0.464 / 0.509 0.220 / 0.099 0.183 / 0.250 0.189 / 0.854 0.497 / 0.248
GRAPH-FLASHBACK 0.463 / 0.506 0.233 / 0.099 0.183 / 0.251 0.189 / 0.853 0.496 / 0.248
GETNEXT 0.431 / 0.500 0.200 / 0.103 0.185 / 0.252 0.291 / 0.717 0.410 / 0.220
TRAJGPT 0.483 / 0.491 0.215 / 0.101 0.181 / 0.249 0.196 / 0.847 0.475 / 0.237

ME-POIs (w/o Ltext-align) 0.540 / 0.703 0.757 / 0.154 0.263 / 0.337 0.159 / 0.878 0.600 / 0.308
ME-POIs 0.554 / 0.722 0.766 / 0.161 0.291 / 0.355 0.154 / 0.884 0.609 / 0.322

Table 4. Comparison to mobility-based models in Houston. Results averaged over 5 runs. Best and second best values are highlighted.

Method Open Hours Visit Intent Busyness Price Level
(↑) F1 / (↑) AUROC (↑) F1 / (↑) AUPRC (↓) MAE / (↑) Cosine (↑) Accuracy / (↑) F1

SKIP-GRAM 0.483 / 0.474 0.214 / 0.300 0.191 / 0.854 0.543 / 0.230
POI2VEC 0.486 / 0.503 0.184 / 0.298 0.255 / 0.778 0.555 / 0.270
GEO-TEASER 0.483 / 0.433 0.158 / 0.254 0.255 / 0.778 0.514 / 0.180
TALE 0.482 / 0.465 0.159 / 0.256 0.254 / 0.779 0.529 / 0.201
HIER 0.498 / 0.542 0.159 / 0.264 0.234 / 0.804 0.551 / 0.184
CTLE 0.306 / 0.496 0.183 / 0.258 0.195 / 0.854 0.511 / 0.230

DEEPMOVE 0.482 / 0.454 0.159 / 0.262 0.249 / 0.785 0.536 / 0.230
STAN 0.484 / 0.496 0.183 / 0.257 0.185 / 0.864 0.513 / 0.231
GRAPH-FLASHBACK 0.484 / 0.496 0.185 / 0.259 0.185 / 0.864 0.510 / 0.229
GETNEXT 0.493 / 0.551 0.161 / 0.293 0.192 / 0.857 0.549 / 0.180
TRAJGPT 0.483 / 0.491 0.179 / 0.253 0.188 / 0.861 0.534 / 0.239

ME-POIs (w/o Ltext-align) 0.519 / 0.604 0.270 / 0.314 0.182 / 0.867 0.564 / 0.276
ME-POIs 0.582 / 0.657 0.306 / 0.352 0.177 / 0.871 0.590 / 0.294

supervises anchor POI embeddings to reflect their empiri-
cal visitation patterns, and propagates temporal signals to
sparsely visited locations via its distribution transfer mech-
anism. Together, these components, enable ME-POIS to
learn effective, POI-centric representations that outperform
embeddings optimized solely for trajectory modeling.

4.3. Ablation Studies

Impact of each loss term. Table 5 reports the impact of
each component on the weekly opening hours task. Starting
with our main contrastive learning optimization objective,
we observe that ME-POIS w/ LME-POI, achieves strong per-
formance that even surpasses all standard mobility-based
baselines. This result, further highlights the effectiveness of
our contrastive learning component. By aligning the POI
prototype with all individual visit embeddings, ME-POIS
aggregate diverse visitation patterns across users and times-
tamps into a stable, place-centric representation, that can be
used to address POI-centric tasks, something that conven-
tional sequence-based mobility models are unable to achieve.
Adding the sparsity regularization term (LKL-sparse) further
improves performance by stabilizing representations for

Table 5. Ablation of each loss term for open hours in Houston.
Results averaged over 5 runs. Best values are highlighted.

Los Angeles Houston
Method (↑) F1 / (↑)AUROC (↑) F1 / (↑) AUROC

ME-POIS + w/ LME-POI 0.490 / 0.608 0.510 / 0.595
+ w/ Lsparse 0.535 / 0.701 0.518 / 0.603
+ w/ Lanchor 0.540 / 0.703 0.519 / 0.604
+ w/ Ltext-align 0.554 / 0.722 0.582 / 0.657

long-tail POIs using anchor-derived visitation priors, partic-
ularly in the Los Angeles dataset where anchor coverage is
denser. Incorporating the anchor alignment loss (LKL-anchor)
provides additional but moderate gains, which we expect
given that anchors cover only a small subset of the POIs.
Finally, the text alignment loss (Ltext-align) further improves
results by adding semantic context to our embeddings, here
by aligning with OPENAI-LARGE text embeddings. Over-
all, each objective contributes complementary benefits, and
their combination yields the best performance.

Impact of the distribution transfer mechanism. We evalu-
ate the contribution of the proposed visit distribution-aware
objectives by comparing a base ME-POIS model trained
with only the primary contrastive loss LME-POI to a variant
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Figure 4. Predictions on sparse and anchor POIs across models on
open hours in Houston.

that also includes the anchor and sparse distribution losses,
LKL-anchor and LKL-sparse. Results are reported separately
for anchor and sparse POIs on the Houston opening hours
task. As shown in Figure 3, adding the distribution trans-
fer module consistently improves F1 and AUROC for both
groups, demonstrating that multi-scale distribution transfer
for sparse POIs and direct visit distribution supervision for
anchor POIs improve the learned representations.

Comparison across POI density regimes. We further com-
pare our ME-POIS model against selected text- (GEMINI,
OPENAI-LARGE) and mobility-based (CTLE, TRAJGPT)
baselines on the Houston opening hours task, reporting re-
sults separately for anchor and sparse POIs. As shown in
Figure 4, ME-POIS achieves the highest F1 scores for both
groups. Text-based models perform consistently across an-
chor and sparse POIs, as their embeddings are not affected
by sparse visit data, whereas mobility-based models under-
perform on low-visit POIs. In contrast, ME-POIS maintains
strong performance in both data regimes, highlighting the
effectiveness of the multi-scale distribution transfer module
in improving POI embeddings under limited supervision.

5. Related Work
Static POI Representation Learning. Existing approaches
to POI representation learning primarily rely on static at-
tributes to encode the semantic and geographic relationships
between places. Several methods focus on representing
location and neighborhood structure using features like ge-
ographic coordinates, geometry, proximity to other places,
and local connectivity (Yan et al., 2017; Mai et al., 2020;
Rußwurm et al., 2023; Klemmer et al., 2023; Siampou et al.,
2025b; Chu & Shahabi, 2025). To further enrich POI rep-
resentations, recent work incorporates additional context
by integrating text semantics. Recent advances include
(i) geospatial language models (Li et al., 2022; 2023; Yan
& Lee, 2024) pretrained to improve language model per-
formance on specialized spatial tasks, such as toponym
recognition and geo-entity typing, by jointly encoding text
and geographic information and (ii) approaches that ex-
tract geospatial knowledge directly from LLMs (Chen et al.,
2023; Liu et al., 2024; Cheng et al., 2025). For example,
GeoLLM (Manvi et al., 2024) designs spatially informed
prompts to query LLMs for predicting region-specific prop-

erties (e.g., population, wealth, education) directly from
LLM outputs. These methods do not incorporate dynamic
human mobility patterns, which provide complementary be-
havioral signals and can further enhance POI embeddings.

Mobility-Informed POI Representation Learning. Hu-
man mobility data are widely used to model transitions
between POIs. Early approaches, such as POI2Vec (Feng
et al., 2017), learn co-occurrence-based embeddings from
sequences of visits, while later methods incorporate spatio-
temporal orderings (Zhao et al., 2017; Wan et al., 2021)
or hierarchical POI structures (Shimizu et al., 2020) to
improve representation granularity. CTLE (Lin et al.,
2021) adopts a masked sequence modeling objective, where
POI IDs and visit times are randomly masked and pre-
dicted to learn POI representations. More recently, next-
location prediction models learn POI embeddings through
sequence-conditioned objectives that predict the next visited
POI (Feng et al., 2018; Xue et al., 2021; Rao et al., 2022;
Hsu et al., 2024), sometimes augmented with graph-based
structural information (Luo et al., 2021; Yang et al., 2022;
Xu et al., 2024). While effective for modeling user trajec-
tories, these objectives are trajectory-centric and thus their
embeddings capture toward local transition patterns, rather
than the intristic semantics of POIs, including their identity
and function. ME-POIS departs from this paradigm by
explicitly learning POI-centric representations.

6. Conclusion
We introduce ME-POIs, a pretraining framework that en-
riches static POI embeddings derived from text models
with mobility-derived signals from visit sequences, cap-
turing both identity and function of POIs. Our experiments
show that augmenting strong text-based embeddings with
ME-POIs consistently improves performance across diverse
tasks, demonstrating that mobility-informed representations
provide complementary information and enable a richer
understanding of how places are used, beyond static meta-
data. These results confirm that modeling POI function
is essential for generalizable and accurate POI representa-
tions. Future work will extend ME-POIs to other geospa-
tial objects, including road segments, administrative bound-
aries and regions, highlighting the broader applicability of
mobility-informed representation learning.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must
be specifically highlighted here. Our improved, mobility-
enriched POI representations could enable better location-
based services and urban planning tools. Our experiments
rely on aggregated, anonymized mobility data, minimizing
potential privacy concerns.
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A. Appendix
A.1. Additional Details on Experimental Setup

A.1.1. DATASET STATISTICS

Table 6 summarizes key statistics of the two mobility datasets used in our experiments. Both datasets consist of anonymized
raw GPS trajectories, containing timestamped geographic coordinates and randomized device identifiers. We convert these
trajectories into sequences of POI visits through a two-step preprocessing pipeline: staypoint detection and POI attribution.

For staypoint detection, we use the trackintel library, which implements the standard distance–time threshold method
proposed by Li et al. (2008). A staypoint is identified when a user remains within a radius of 100 m for at least 5 minutes.
For POI attribution, we use the POI geometries provided from SafeGraph and assign each staypoint to a POI if its location
falls within the POI polygon, or otherwise to the nearest POI centroid within 100 m. Staypoints that cannot be matched to
any POI are labeled as UNKNOWN visits. These visits are retained in the visit sequences to preserve temporal continuity, but
are excluded from the loss computation since they lack reliable POI labels. After preprocessing, we discard visit sequences
with fewer than 5 visits to ensure sufficient temporal context. POIs with at least M total visits are designated as anchor POIs,
while the remaining POIs are considered sparse. We set M=100 for Los Angeles and M=50 for Houston. The resulting
dataset statistics, including the proportion of anchor POIs, are reported in Table 6.

The number of POIs in Los Angeles and Houston is comparable, although Los Angeles covers a larger geographic region
and therefore contains more POIs. Due to its year-long temporal coverage, the Los Angeles dataset contains approximately
an order of magnitude more visits than the Houston dataset, which spans 20 days.

Table 6. Summary of Datasets Statistics.

Region Time Period Bounding Box # POIs # Visits % Anchor POIs

Los Angeles 01/01 - 12/31 2019 [32.81, -118.94, 34.82, -117.65] 39,557 6,908,365 9.07%
Houston 03/05 - 03/26 2020 [29.55, -95.56, 29.95, -95.16] 28,419 715,604 7.04%

A.1.2. DOWNSTREAM TASK DETAILS

We evaluate our five newly introduced map enrichment tasks, chosen to comprehensively assess the quality of our POI
embeddings: (i) weekly opening hours, (ii) permanent closure detection, (iii) directional interest classification, (iv)
busyness estimation, and (v) price level classification. These tasks are strategically selected to capture both the functional
characteristics and identity of POIs. Functional tasks, including weekly opening hours, busyness, and directional interest,
reflect temporal usage patterns and user interest, while identity-focused tasks, including permanent closure and price level,
capture intrinsic attributes. Labels are sourced from SafeGraph for opening hours and closure status, and from Google Maps
for the remaining tasks, providing a mix of publicly available and private data. Below, we provide detailed descriptions of
each of the five tasks:

• Weekly Opening Hours. The goal is to predict the operational schedule of each POI over a week. We represent
this as a 168-dimensional binary vector, where each dimension corresponds to one hour of the week, and the value
indicates whether the POI is open or closed during that hour. Ground-truth labels are derived from SafeGraph. This
task evaluates the model’s ability to capture temporal activity patterns of POIs. In Los Angeles, 16, 692 POIs have
opening hours labels, while in Houston 14, 465 POIs have labels.

• Permanent Closure Detection. This is a binary classification task where the goal is to predict whether a POI is
permanently closed. POIs with missing closure labels are assumed to be open. In Los Angeles, 3, 807 POIs are labeled
as permanently closed. The Houston dataset does not include this task due to insufficiently reliable closure labels. This
task tests whether the model can recognize POIs that do not longer exist.

• Visit Intent Classification. We define visit intent as a proxy for user interest in visiting a POI, measured by the average
number of Google Maps direction queries to the location. Since we do not observe actual visits, this provides an
indirect signal of interest. We discretize the continuous query values into four ordinal classes from low to high intent.
This task evaluates the model’s ability to predict POIs that attract interest from users. In Los Angeles, 22, 369 POIs
have visit intent labels, and in Houston 15, 632 POIs have labels.
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• Busyness Estimation. This task measures typical foot traffic or occupancy of a POI throughout the week, based on
Google Maps’ reported busyness data. For each POI, we compute an average weekly busyness signal, either as a
continuous value or discretized into multiple levels for evaluation. This task assesses how well the model can capture
patterns of user activity around POIs. We have 6, 034 labels in Los Angeles and 5, 684 in Houston.

• Price Level Classification. The goal is to predict the relative expense of visiting a POI, as reported by Google Maps.
We map price levels into four ordinal classes ranging from low to high. This task evaluates whether the model can
infer socioeconomic or commercial attributes of a location from mobility and semantic embeddings. There are 5, 091
labeled POIs in Los Angeles and 4, 105 in Houston.

Per-label statistics for visit intent and price level are summarized in Table 7.

Table 7. Visit Intent and Price Level Counts

Los Angeles Houston

Class Visit Intent Price Level Visit Intent Price Level

0 12840 2563 7158 2270
1 1376 2311 979 1675
2 5654 181 4841 133
3 2499 36 2654 27

A.1.3. DETAILS ON BASELINES

We evaluate ME-POIS against both text- and mobility-based baselines. For text-based comparisons, we select
competitive and widely adopted embedding models, including recent academic approaches, including MPNET
(all-mpnet-base-v2), E5 (E5-large-v2), and GTR-T5 (gtr-t5-large), as well as industry-grade com-
mercial models, including NOMIC (nomic-embed-text-v1), OPENAI (text-embedding-3-small/large),
and GEMINI (models/embedding-001). Each model is provided with POI descriptions to generate embeddings,
which are subsequently used for downstream evaluation.

We further include the following mobility baselines:

• SKIP-GRAM (Mikolov et al., 2013): Learns POI embeddings by predicting surrounding POIs in check-in sequences,
capturing sequential context for mobility modeling.

• POI2VEC (Feng et al., 2017): Jointly captures user preferences, POI sequential transitions, and geographical influence
to predict future visitors to a POI.

• GEO-TEASER (Zhao et al., 2017): Proposes a geo-temporal POI embedding model that captures sequential check-in
contexts, day-specific temporal patterns, and geographical influence to improve POI recommendation.

• TALE (Wan et al., 2021): Learns time-aware location embeddings using a hierarchical temporal tree to improve
downstream tasks such as classification, flow, and next-location prediction.

• HIER (Shimizu et al., 2020): Generates hierarchy-enhanced POI category representations by leveraging disentangled
mobility sequences.

• CTLE (Lin et al., 2021): Learns POI representations via a masked language objective that predicts the location and
arrival time of visits.

• DEEPMOVE (Feng et al., 2018): Uses GRU-based attention to capture both long-term periodicity and short-term
sequential patterns of user trajectories.

• STAN (Luo et al., 2021): Leverages relative spatio-temporal relationships between POIs in a trajectory to improve
next-location prediction.

• GRAPH-FLASHBACK (Rao et al., 2022): Enriches POI representations with a POI transition graph and combines it with
sequential modeling to improve next-location recommendation.

• GETNEXT (Yang et al., 2022): Employs a graph-enhanced transformer to model global transitions, user preferences,
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spatio-temporal context, and time-aware category embeddings for next-location prediction.

• TRAJGPT (Hsu et al., 2024): A transformer-based, multi-task spatiotemporal generative model that improves predictions
of arrival time and duration of a user’s next stay via Gaussian mixture models.

The POI representation matrix learned by each model is extracted and used for downstream evaluation.

A.1.4. IMPLEMENTATION DETAILS & HYPERPARAMETER CONFIGURATION

Input normalization. All coordinates are normalized to [0, 1] using the bounding box of each area of interest. We use
the Space2Vec location encoder with λmax = 1.4142 (corresponding to the normalized diagonal distance), λmin = 0.1,
and 64 frequency scales. Temporal features are normalized to [0, 1] by extracting the hour of day and day of week, which
are encoded separately and then concatenated into a single temporal representation. For the spatial Gaussian kernels use
bandwidths of 0.3, 1.0, and 3.0 km, which are normalized to align with the coordinate scale.

Model configuration. We set the sequence window size to w=32, the hidden embedding dimension to dh=512, and the text
embedding dimension to du=768. The Transformer encoder backbone consists of N=4 layers with i=8 attention heads and
a feedforward hidden dimension of 1024. All MLP modules use a single hidden layer with 256 units and ReLU activation.
Overall, the ME-POIs framework is lightweight with ∼ 53.7 M parameters, well within standard computational budgets.

Training details. The model is pretrained on the full visit sequence dataset and subsequently fine-tuned using a 60/20/20
train/validation/test split. We use the Adafactor optimizer during pretraining with a learning rate of 1e−3, and AdamW
during fine-tuning with a learning rate of 1e−5. Model is pretrained for 20 epochs, and fine-tuned for 100 epochs with early
stopping. Unless otherwise stated, we set λα = λs = λt = 1.

A.1.5. EXPERIMENTAL ENVIRONMENT

We implement our models in PyTorch 2.6.0 on a Debian Linux server, equipped with 50 GB RAM, 8 vCPUs (Intel Xeon @
2.30 GHz), and an NVIDIA Tesla V100–SXM2–16GB GPU (CUDA 13.0).

A.2. Prompt Examples for Text Embedding Models

We construct text prompts for each POI following the GeoLLM (Manvi et al., 2024) approach, which incorporates both
(i) POI information, including coordinates, category, and address, which we obtain from Safegraph and (ii) neighborhood
context, including the name, distance, and direction of the 10 closest POIs. This prompt design has been shown to effectively
extracts geospatial knowledge, producing text embeddings that captures rich semantic and contextual information. We then
query text embedding models (e.g., OPENAI and GEMINI), and set the output dimension to 768, to ensure a fair comparison
across models. An example prompt for the TACO MAN POI in Los Angeles is illustrated in Figure 5.

Taco Man (Restaurants and Other Eating Places). Coordinates: 34.062307, -118.197612. 
Address: 1602 N Soto St, Los Angeles, CA, 90033.

Nearby Places: 
0.0 km West: Tacos La Guera; 
0.0 km West-Southwest: Soto Liquor Market; 
0.1 km West: DaVita; 
0.1 km West: Davita Trc Usc Kidney Center; 
0.2 km North-Northeast: Ai Food Corporation; 
0.2 km West: USC Occupational Therapy Faculty Practice; 
0.2 km West: Molecular Imaging Center; 
0.2 km West-Southwest: Bright Horizons Usc Hsc Infant Care Center; 
0.2 km West-Southwest: Bright Horizons Usc Hsc Child Development Ctr; 
0.3 km Northeast: Cardinal Moving Systems.

Figure 5. Example prompt for Taco Man POI in Los Angeles.

A.3. Computational Efficiency

The pre-training cost of ME-POIs is dominated by running the visit encoder on sequences of visits. For a sequence length of
L and an embedding dimension d, the overall computation complexity is O(L2 · d+ L · d2) for. The contrastive module
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operates only over in-batch negatives: for a batch of B visits containing U unique POIs, its cost is O(B · U · d), which in
practice remains lightweight and independent of the full POI set size. Note that the # of unique POIs in the batch is less than
or equal to # of visits in the batch. The POI anchor distributions and multiscale kernels are precomputed only once offline,
with computation complexity O(M · |Panchor| · |Psparse|) for M scales.
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