
Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for
GeoAI Applications

Maria Despoina Siampou * 1 Jialiang Li * 2 John Krumm 1 Cyrus Shahabi 1 Hua Lu 2

Abstract
Encoding geospatial objects is fundamental for
geospatial artificial intelligence (GeoAI) appli-
cations, which leverage machine learning (ML)
models to analyze spatial information. Common
approaches transform each object into known for-
mats, like image and text, for compatibility with
ML models. However, this process often discards
crucial spatial information, such as the object’s po-
sition relative to the entire space, reducing down-
stream task effectiveness. Alternative encoding
methods that preserve some spatial properties are
often devised for specific data objects (e.g., point
encoders), making them unsuitable for tasks that
involve different data types (i.e., points, poly-
lines, and polygons). To this end, we propose
POLY2VEC, a polymorphic Fourier-based encod-
ing approach that unifies the representation of
geospatial objects, while preserving the essen-
tial spatial properties. POLY2VEC incorporates a
learned fusion module that adaptively integrates
the magnitude and phase of the Fourier transform
for different tasks and geometries. We evaluate
POLY2VEC on five diverse tasks, organized into
two categories. The first empirically demonstrates
that POLY2VEC consistently outperforms object-
specific baselines in preserving three key spatial
relationships: topology, direction, and distance.
The second shows that integrating POLY2VEC
into a state-of-the-art GeoAI workflow improves
the performance in two popular tasks: population
prediction and land use inference.

1. Introduction
The increasing availability of geospatial data from sources
such as satellites, ground-based sensors, and crowdsourced

1Department of Computer Science, University of Southern
California, Los Angeles, USA 2Department of People and Tech-
nology, Roskilde University, Denmark. Correspondence to: Maria
Despoina Siampou <siampou@usc.edu>.

Under Review, 2025. Copyright 2025 by the author(s).

platforms like OpenStreetMap (OSM)1 (Lee & Kang, 2015;
Jokar Arsanjani et al., 2015; Basiri et al., 2019), com-
bined with the recent advancements in machine learning
(ML) (Vaswani, 2017; Bommasani et al., 2021), has fu-
eled significant progress in geospatial artificial intelligence
(GeoAI) (Smith, 1984; Couclelis, 1986; Janowicz et al.,
2020; Gao et al., 2023). GeoAI leverages ML models
to analyze geospatial objects, such as points of interest
(POIs), building footprints, and vehicle trajectories, thereby
extracting valuable insights that enable a variety of decision-
making applications, including transportation network op-
timization (Li et al., 2017; Mirowski et al., 2018), urban
planning (Zhang et al., 2021; Wu et al., 2022), energy man-
agement (Sun et al., 2020), and improved emergency re-
sponse strategies (Kyrkou et al., 2022), to name a few.

A fundamental step in GeoAI pipelines is the transforma-
tion of geospatial data into latent representations that can
be easily processed by ML models, a step formally known
as encoding. A common approach to encoding converts
coordinate-based geospatial data into formats compatible
with established feature extraction models. Although effec-
tive for specific tasks, this conversion often discards crucial
spatial information, significantly limiting the generalizabil-
ity of these models. For example, building footprints are
frequently rasterized into images and processed with vision-
based models for urban prediction tasks (Li et al., 2023;
Balsebre et al., 2024). While this approach captures object
shapes, it neglects important spatial relationships, such as
the relative positioning and alignment of objects within the
area. Similarly, POIs that are represented as text, by using
attributes like category as input to language-based models,
capture semantic relationships but omit precise spatial loca-
tions (Huang et al., 2022). As a result, these approaches are
application-specific and struggle to generalize across tasks
that require a deeper understanding of spatial relationships.

To address the aforementioned limitations, spatially explicit
encoding techniques have been proposed. These methods
preserve crucial spatial properties, while remaining com-
patible with downstream ML models. For instance, THE-
ORY (Mai et al., 2020) encodes the absolute positions of
POIs using sinusoidal functions with varying frequencies.

1https://openstreetmap.org

1

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

(a) (b) (c)

Figure 1: Visualization of the Fourier transform magnitude
and phase of (a) road segment, (b) building, and (c) POI.

Xu et al. (2018) directly encodes the coordinates of trajec-
tories using multi-layer perceptons and feeds it to a GRU,
capturing their sequential nature. For polygons, NUFT-
SPEC (Mai et al., 2023b) maps geometries into the spectral
domain, effectively preserving key polygon properties such
as topology awareness. However, the design of these meth-
ods inherently limits their applicability, as they only capture
the properties of the specific geospatial object they are de-
vised for. This restricts their generalizability in tasks involv-
ing mixed geospatial object types, such as land use classifi-
cation, where integrating points (e.g., POIs) and polygons
(e.g., buildings) requires simultaneously preserving their
spatial properties as well as relationships between them.

In this work, we introduce POLY2VEC, a polymorphic en-
coding framework that unifies the representation of 2D
geospatial objects, including points, polylines, and poly-
gons. At its core, POLY2VEC leverages the Fourier trans-
form to encode essential spatial properties, transforming the
input geometries2 into the frequency domain. Given that
this transformation results in complex-valued features, the
magnitude and phase components are extracted. As shown
in Figure 1, these components complement each other: the
magnitude reflects spatial extent, being uniform for points
with no shape and varying for polygons and polylines, while
the phase highlights directionality, such as the alignment of
a polyline. To combine these components into a single repre-
sentation, POLY2VEC incorporates a learned fusion module
that adaptively balances their contributions based on the
task and geometry type, producing a real-valued geometry
embedding that ensures compatibility with ML models.

We formally define four key properties, shape preservation,
direction preservation, distance preservation, and task flexi-
bility, as essential criteria for evaluating the effectiveness of
geometry encoding. These properties ensure the produced
embeddings accurately capture the essential geometry char-
acteristics while remaining versatile across different tasks.
To demonstrate that POLY2VEC preserves these proper-

2We refer to geometries and geospatial objects interchangeably.

ties, we conduct a two-part evaluation. First, we evaluate
POLY2VEC on spatial reasoning tasks, showing that it out-
performs the state-of-the-art specialized baselines by up
to 17% for topological classification, 26% for directional
classification, and 75% for distance estimation. Second,
we show that integrating POLY2VEC into a state-of-the-art
GeoAI workflow reduces prediction error by 14% and 5%
in population prediction and land use inference.

In summary, our contributions are:
• We introduce POLY2VEC, the first encoding framework
that unifies the representation of various 2D geometries.
• We propose a 2D continuous Fourier transform-based
encoding approach to capture crucial spatial properties, in-
cluding shape, distance, and direction.
• We design a learned fusion strategy to adaptively combine
Fourier magnitude and phase for diverse objects and tasks.
• Our experiments show that POLY2VEC preserves crucial
geometry encoding properties, demonstrating its versatility
in handling diverse geospatial objects, and task-flexibility
when integrated into state-of-the-art GeoAI pipelines.

2. Preliminaries
2.1. Problem Formulation

Definition 1 (Geospatial Object). A geospatial object g ∈
R2 is represented by an array P ∈ RN×2, where each row is
a point (x, y), and N is the total number of points. The type
of geometry (e.g., point, polyline, or polygon) is determined
by the organization and relationships among these points.

Polymorphic Encoding of Geospatial Objects. Given
a dataset of geospatial objects G = {g} ∈ RN×2, the
goal is to define an encoding function eθ(g) : RN×2 →
Rd, parameterized by θ, that maps each geometry g to a d-
dimensional vector v, termed as geometry embedding. The
embedding dimension d remains constant across different
geometry types, making eθ polymorphic. The encoding is
intended to capture the following key properties.
Property 1 (Shape Preservation). For any geometry g ∈ G,
its embedding v, should capture its structural characteristics:
shape and boundary for polygons, length for polylines, and
the lack of spatial extent for points.
Property 2 (Direction Preservation). For any geometries
gi, gj ∈ G, eθ should ensure their embeddings vi, vj reflect
their relative orientation.
Property 3 (Distance Preservation). For any geometries
gi, gj ∈ G, the similarity of their embeddings vi,vj should
monotonically decrease as their spatial distance ∥gi − gj∥
increases, and vice versa.
Property 4 (Task Flexibility). The encoder eθ should facil-
itate multiple tasks without requiring modifications.

Properties 1-3 ensure that v captures all essential spatial

2

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

decomposition

2D Continuous Fourier transform

affine

 transformation

F
o

u
rie

r tra
n
sfo

rm

c
o
m

p
u

tatio
n

Point

𝑓𝑝(𝑥, 𝑦)

Polyline

𝑓𝑙(𝑥, 𝑦)

Polygon

𝑓𝑝𝑔(𝑥, 𝑦)

Input

𝐳

𝝓

+ 𝐯

Learned Fusion

𝐅𝑔

Poly2Vec

G
e
o
A

I A
p

p
lic

a
tio

n
s

𝑓𝑝(𝑥, 𝑦)

{𝑓𝑔𝑖
(𝑥, 𝑦)}

{𝑓𝑐 𝑥, 𝑦 , 𝐀, 𝜏}

{𝐅𝑔𝑖
(𝑢, 𝑣)}

ℎ

(a) The workflow of POLY2VEC.

a b

c

−
1

2

1

2

1

rect(x)

q

r

s

a
b

c1

1

s

q r

y

x

y

x

(i) Affine transform from the

arbitrary line segment 𝑙 to the

canonical line segment 𝑙𝑐.

𝑙𝑐

𝑙

(ii) Affine transform from the triangle

△ with vertices 𝐪𝐫𝐬 to the canonical

triangle ⊿ with vertices 𝐚𝐛𝐜.

(b) Affine transform arbitrary geometry to its corre-
sponding canonical geometry.

Figure 2: Overview of POLY2VEC.

information, while Property 4 guarantees flexibility for use
across GeoAI models. Section 4 empirically demonstrates
that our proposed eθ satisfies these properties.

2.2. 2D Continuous Fourier Transform Properties

A key component of our encoding approach is the computa-
tion of the 2D continuous Fourier transform (CFT) 3. For a
given 2D function f(x, y), its Fourier transform is denoted
as F{f(x, y)} = F (u, v)4 and is formally defined as:

F (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−j2π(ux+vy)dx dy (1)

where j =
√
−1 and u, v are the frequency samples.

We now summarize Fourier transform properties relevant to
our approach following (Gaskill, 1978).

Linearity. The Fourier transform of a sum of functions de-
noted as fi(x, y), is the sum of their corresponding Fourier
transforms Fi(u, v):

F

{
n∑

i=1

aifi(x, y)

}
=

n∑
i=1

aiFi(u, v), ai ∈ C (2)

Affine Transformation. For an affine-transformed function
f(Ax+ τττ), where x = [x, y]⊤, its Fourier transform is:

F{f(Ax+τττ)} =
1

|det(A)|
e−j2πτττ⊤A−⊤uF (A−⊤u) (3)

where u = [u, v]⊤, A ∈ R2×2 is the affine matrix, and
τττ ∈ R2 is the translation vector.

Hermitian Symmetry. For real-valued functions f(x, y),
F (u, v) satisfies F (u, v) = F ∗(−u,−v), where F ∗(u, v)
denotes the complex conjugate.

Magnitude and Phase. The Fourier Transform F (u, v)
is a complex-valued function composed of a real part,

3We use Fourier Transform and CFT interchangeably.
4For compactness, we use F (u, v) to describe the CFT.

Re(F (u, v)), and an imaginary part, Im(F (u, v)). The mag-
nitude z(u, v) and phase ϕ(u, v) are defined as:

z(u, v) =
√

Re(F (u, v))2 + Im(F (u, v))2 (4)

ϕ(u, v) = atan2(Im(F (u, v)),Re(F (u, v))) (5)

3. Methodology
Figure 2 illustrates our proposed POLY2VEC, which uni-
formly encodes arbitrary geospatial objects for GeoAI ap-
plications. We first describe how the Fourier transform is
derived for each geometry type, and then outline the learned
fusion module for deriving the final geometry embeddings.

3.1. 2D Continious Fourier Transform of Geometries

3.1.1. FOURIER TRANSFORM OF A POINT

A point p = (xp, yp) ∈ R2 is modeled as a 2D Dirac
delta function, which represents the point as a distribution
concentrated entirely at (xp, yp), and can be expressed as:

fp(x, y) = δ(x− xp, y − yp) (6)

To that extent, the Fourier transform of fp(x, y) is given by:

Fp(u, v) = e−j2π(xpu+ypv) (7)

where (u, v) are the frequency components.

The Fourier transform magnitude for any point is constant,
zp(u, v) = 1, while the phase ϕp(u, v) encodes its location.

As shown in Figure 2, deriving the Fourier transform for
polylines and polygons involves additional steps. Polylines
are divided into line segments, and polygons are triangulated
into non-overlapping triangles. The Fourier transform is
computed for each component by affine transforming them
to their canonical geometry, and the linearity property of
Eq. (2) is used to compute the Fourier transform of the
original geometry5. Details for polylines and polygons are

5The same methodology can be adopted to compute the CFT
of multi-polygons.

3

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

specified below, with derivation details in Appendix A.2.

3.1.2. FOURIER TRANSFORM OF A POLYLINE

We begin by deriving the Fourier transform of a canoni-
cal line segment and then generalize to any arbitrary line
segments. Consider the canonical line segment lc, which
extends from a = (− 1

2 , 0) to b = (12 , 0) in R2, as shown in
Figure 2b. Then, lc can be represented as:

flc(x, y) = rect(x)δ(y) (8)

where δ(y) represents a Dirac delta function ridge along the
x-axis, and rect(x) restricts the ridge to the interval |x| ≤ 1

2 .

The Fourier transform of flc(x, y) is given by:

Flc(u, v) = sinc(u) (9)

Now consider an arbitrary line segment l with endpoints
q = (xq, yq) and r = (xr, yr). To compute the Fourier
transform of l, we map it to the canonical line segment
lc, using the affine transformation property. To compute
this, we first introduce an auxiliary point c = (12 , 1) to the
structure of lc so that it is not colinear with ab. This point
maps to another auxiliary point s introduced in the structure
of the arbitrary line segment l. The auxiliary point s is
defined as s = r + n, where n = (yq − yr, xr − xq)

⊤,
representing a 90◦ clockwise rotation of the vector r − q.
Note that the line segments qr and rs have the same length.

Given the points q, r, s and a,b, c we then construct the
affine transformation matrix A = [a b c][q r s]−1. By
applying Eq. (3), the Fourier transform of an arbitrary line
segment l, with endpoints q, r, is expressed as:

Fl(u, v) =
1

|det(A)|
e−j2πτ⊤A−⊤uFlc(A

−⊤u)

= ∥q− r∥2e−j2π(q+r
2)usinc(u⊤(r− q)) (10)

At (u, v) = (0, 0), the Fourier transform is Fl(0, 0) =
∥q− r∥2, the squared length of the line segment.

Finally, following Eq. (2), the Fourier transform of an arbi-
trary polyline pl is computed as:

Fpl(u, v) =

Tl∑
i=1

Fli(u, v) (11)

where Fli(u, v) is the Fourier transform of the i-th line
segment and Tl is the total number of line segments. The
term ai = 1, since the line segments are non-overlapping.

3.1.3. FOURIER TRANSFORM OF A POLYGON

To compute the Fourier transform of a polygon we decom-
pose it into a set of non-overlapping triangles using standard

triangulation techniques6. We thus begin with the Fourier
transform of a canonical isosceles right triangle and then
generalize to its computation for arbitrary triangles.

Consider the canonical isosceles right triangle c with ver-
tices a=(0, 0), b=(1, 0), and c=(1, 1), represented as:

f c(x, y) =

{
1, if 0 ≤ x ≤ 1 and 0 ≤ y ≤ x,

0, otherwise.
(12)

The Fourier transform of f
c
(x, y) is then given by7:

F
c
(u, v) =

∫ 1

0

∫ x

0

e−j2π(ux+vy) dy dx

=
1

4π2uv(u+ v)

[(
(u+ v) cos(2πu)

− u cos(2π(u+ v))− v
)
− j

(
(u+ v) sin(2πu)

− u sin(2π(u+ v))
)]

(13)

Next, we compute the Fourier Transform of an arbitrary
triangle ∆, with vertices q = (xq, yq), r = (xr, yr), and
s = (xs, ys), by mapping it to the canonical triangle using
the affine transformation property (Figure 2b). The affine
transformation matrix is defined as A = [a b c][q r s]−1.

By substituting the vertices of ∆ into A and applying
Eq. (3), the Fourier Transform of the triangle F∆(u, v) can
be calculated. In this computation, the determinant of A,
|det(A)| = 1

2α , where α is the area of the triangle ∆.

Finally, the Fourier transform of an arbitrary polygon pg,
given the linearity property of Eq. (2), can be computed as:

Fpg(u, v) =

Tpg∑
i=1

F∆i
(u, v) (14)

where F∆i
(u, v) is the Fourier transform of the i-th triangle,

and Tpg is the total number of extracted triangles. The term
ai = 1, since the triangles are non-overlapping.

Building on the Fourier transform computation described
earlier, we can now extract the frequency representation of
a given geometry g, expressed as a spatial function fg(x, y)
over R2 as, Fg = [F1,F2, . . . ,FW]⊤ ∈ CW , where W is
the number of frequency components, and Fi = F (ui, vi)
represents the value of the Fourier transform evaluated at
the specific frequency coordinates (ui, vi).

To sample the frequency components, we employ a geomet-
ric series sampling strategy (Mai et al., 2020; 2023b), which

6We adopt Constraint Delauney triangulation in this paper.
7Special cases where u, v, and u+v approach zero are handled

separately, and presented in Appendix A.2.3.

4

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

balances low and high-frequency components to capture
both global and local details. We also experimented with
learned frequencies in Appendix A.3.2 but found that the
two strategies produced nearly identical results.

3.2. Learned Fusion of Fourier Transform Features

Given that Fg consists of complex values, we decompose
it in two real-valued vectors of the magnitude z and the
phase ϕϕϕ, computed as in Eqs. (4) and (5), respectively. This
transformation ensures the representation is compatible with
downstream ML models, which typically operate on real-
valued inputs. Furthermore, the magnitude z captures the
intensity of contributions at different frequencies, reflect-
ing the geometry’s size and overall shape, while the phase
ϕϕϕ encodes positional and orientational information of the
geometry’s features (Zahn & Roskies, 1972).

While the final geometry embedding can be created by
simply concatenating z and ϕϕϕ, their relative importance
should vary with the geometry type and the downstream
task. For instance, the magnitude of points is always 1,
whereas it encodes the shape and size of polygons. There-
fore, when encoding points, the phase should contribute
more than the magnitude in the representation. To this
end, POLY2VEC adaptively learns the importance of mag-
nitude and phase through two separate transformations
z∗=hz(z) and ϕϕϕ∗=hϕ(ϕϕϕ), where hz: RW → RW and hϕ:
RW → RW are separate MLPs for z and ϕ respectively.

Finally, the transformed vectors z∗ ∈ RW and ϕϕϕ∗ ∈
RW are concatenated and passed through a final MLP
h : RW → Rd to produce the final geometry embedding
v = h([z∗;ϕϕϕ∗]) ∈ Rd, which can be inputted to any ma-
chine learning model M , such that M(v) → y, where y
represents task-specific outputs. We will empirically verify
that v preserves the key properties in Section 4.

4. Experiments
In this section, we conduct experiments to evaluate the effec-
tiveness of POLY2VEC across four key research questions:
[RQ1] Does POLY2VEC effectively preserve the critical
geometric properties of shape, direction, and distance?
[RQ2] How does POLY2VEC perform in comparison to
baseline encoding methods tailored for specific object types?
[RQ3] Can integrating POLY2VEC into existing workflows
lead to improvements in their performance?
[RQ4] Does learned fusion boost POLY2VEC performance?

4.1. Spatial Reasoning Tasks

This section addresses RQ1 and RQ2, empirically eval-
uating POLY2VEC’s ability to preserve the properties of
Section 2.1, against specialized baselines. We categorize
these evaluations as spatial reasoning tasks, which are fun-

damental to broader applications like geospatial question
answering (GeoQA), relying on precise spatial understand-
ing (Punjani et al., 2018; Papamichalopoulos et al., 2024).

Datasets. We evaluate two OSM datasets from Singapore
and New York, containing POIs (points), main roads (poly-
lines), and buildings (polygons).

Baselines. We include three categories of baselines: point
encoders: (i) DIRECT, directly utilizing coordinates (Chu
et al., 2019), (ii) TILE, a discretization method (Berg
et al., 2014), (iii) WRAP, a coordinate wrapping mecha-
nism (Mac Aodha et al., 2019), (iv) GRID, inspired by posi-
tion encoding (Mai et al., 2020), and (v) THEORY, a multi-
scale encoder (Mai et al., 2020). All point encoders are
extended to other geometries handling them as sequences of
points, following Rao et al. (2020); Xu et al. (2018). poly-
line encoder: (i) T2VEC a classic trajectory encoder (Li
et al., 2018). polygon encoders: (i) RESNET1D (Mai et al.,
2023b) and (ii) NUFTSPEC (Mai et al., 2023b).

Input geometry coordinates are normalized to [−1, 1] ×
[−1, 1]. More experimental details are in Appendix A.4.

4.1.1. TOPOLOGICAL RELATIONSHIP CLASSIFICATION

This task classifies topological relationships defined by the
DE-9IM model (Clementini et al., 1993) for geospatial ob-
ject pairs. Supported relationships are in Table 3.

Settings. The geometry embeddings of each pair are con-
catenated, passed through a 2-layer MLP with NC output
units (number of relationships). We adopt cross-entropy
loss for optimization. Performance is measured by accu-
racy, precision, recall, and F1-score. Accuracy results are in
Table 1, with the rest in Appendix A.4.6.

Results. From Table 1, we observe that POLY2VEC con-
sistently outperforms all baselines across all experiments.
Unlike specialized encoders that excel only for specific
pairs, POLY2VEC’s performance is consistent across all
geometries, highlighting its versatility and generalization
capabilities. The second-best performing models vary by
geometry type, with T2VEC for polylines and NUFTSPEC
for polygons. This shows that simply extending point en-
coders to handle all geospatial objects is not adequate, as it
fails to preserve characteristics like the object’s shape and
position, leading to decreased performance. Finally, all mod-
els perform better when detecting relationship is a binary
classification (e.g., point-polyline in Table 3), compared
to multi-classification (e.g., polygon-polygon in Table 3).
This is expected, as the latter requires capturing fine-grained
spatial nuances, posing greater difficulty. In summary, these
results emphasize the importance of preserving shape (Prop-
erty1), and distance (Property 3) in geometry embeddings.
POLY2VEC’s ability to do so, along with its unified frame-
work, enables it to consistently outperform baselines.

5

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

Table 1: Model accuracy on topological relationship classification. Best and second best are highlighted.

Methods Singapore New York

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

RESNET1D - - - - 0.4570.017 - - - - 0.4520.033

NUFTSPEC - - - - 0.6020.009 - - - - 0.5850.008

T2VEC - - 0.728 0.023 - - - - 0.8070.121 - -

DIRECT 0.8230.013 0.8430.005 0.7330.007 0.3680.010 0.3570.018 0.8460.011 0.9090.018 0.7450.008 0.4950.009 0.4460.023

TILE 0.7900.021 0.7000.010 0.5050.005 0.4590.013 0.4110.009 0.6590.013 0.7830.007 0.5020.009 0.4940.038 0.4050.005

WRAP 0.8860.003 0.8800.008 0.7160.011 0.4760.010 0.3490.004 0.8860.006 0.8800.017 0.7330.009 0.5500.011 0.3810.007

GRID 0.8460.004 0.8440.004 0.6970.031 0.4580.004 0.3350.012 0.8220.039 0.8910.004 0.7390.009 0.5160.008 0.3810.031

THEORY 0.8920.003 0.9000.005 0.7190.008 0.4500.010 0.4610.041 0.8970.008 0.9090.008 0.7340.008 0.5910.006 0.4550.041

POLY2VEC 0.9550.007 0.9490.002 0.8120.010 0.5090.008 0.7020.006 0.9530.003 0.9800.002 0.8300.004 0.6410.062 0.6840.008

Table 2: Model accuracy on directional relationship classification. Best and second best are highlighted.

Methods Singapore New York

point-
point

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

point-
point

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

RESNET1D - - - - - 0.8190.010 - - - - - 0.7470.010

NUFTSPEC - - - - - 0.8070.008 - - - - - 0.6980.017

T2VEC - - - 0.2680.075 - - - - - 0.2490.032 - -

DIRECT 0.8800.006 0.8410.007 0.8440.006 0.8200.002 0.8300.005 0.7520.017 0.8770.004 0.7660.005 0.8360.008 0.6530.007 0.7840.004 0.6940.004

TILE 0.2530.001 0.2680.002 0.2730.008 0.3260.010 0.4540.001 0.3940.003 0.2450.009 0.2580.005 0.3160.005 0.2170.001 0.4660.001 0.3490.012

WRAP 0.8610.018 0.8040.009 0.8030.004 0.7810.002 0.8310.002 0.7780.001 0.8090.004 0.6690.001 0.7490.018 0.5960.019 0.7720.002 0.6020.006

GRID 0.8820.007 0.7280.007 0.7710.003 0.6990.001 0.6410.016 0.5340.138 0.8680.002 0.5900.003 0.6460.049 0.4380.004 0.7520.001 0.4850.079

THEORY 0.9120.014 0.8670.009 0.8580.004 0.8340.012 0.8600.006 0.7350.044 0.8920.017 0.7600.007 0.8260.008 0.6840.009 0.7750.005 0.5550.012

POLY2VEC 0.9320.006 0.9350.032 0.9250.002 0.9060.010 0.9070.007 0.8330.006 0.9090.012 0.8910.004 0.8830.013 0.8630.007 0.8760.009 0.7850.003

Table 3: Topological relationships of geometry pairs.

Geometry Pair Topological Relationships (a relationship b)

point-polyline disjoint, intersects
point-polygon disjoint, contains
polyline-polyline disjoint, intersects
polyline-polygon disjoint, touches, intersects, within
polygon-polygon disjoint, touches, intersects, contains, within, equals

4.1.2. DIRECTIONAL RELATIONSHIP CLASSIFICATION

This task classifies the directional relationships defined by
the 16-compass direction model of two geospatial objects .

Settings. We follow the same setting as in Section 4.1.1,
with Nc = 16, and report the same metrics. Accuracy
results are in Table 2, with the rest in Appendix A.4.6.

Results. From Table 2, we observe that POLY2VEC consis-
tently outperforms all baselines across all experiments. This
demonstrates its ability to effectively preserve the direction
(Property 2) among diverse geometry types. While polygon
encoders outperform the extended point encoders also in this
task, T2VEC underperforms. This is due to T2VEC’s strat-
egy of assigning coordinates to grid cells during encoding,

which is effective for trajectory-related tasks, but introduces
discretization artifacts that affect angular relationships. A
similar limitation is observed in the performance of TILE,
which also relies on discretizing points into grid cells. In
contrast, POLY2VEC encodes geometries holistically, pre-
serving their relative orientation and avoiding these pitfalls.

4.1.3. DISTANCE ESTIMATION

This task evaluates whether geometry embeddings preserve
pairwise distances (Property 3).

Settings. The original distance is estimated by the Euclidean
distance of the geometry embeddings. The mean squared
error (MSE) is adopted as loss function. We compare the
differences between the predicted and original distances
in Figure 3 and report the mean absolute error (MAE) in
Appendix A.4.6.

Results. Figure 3 depicts that the predicted distances gener-
ated by POLY2VEC are closely aligned with the original dis-
tances, whereas the predicted distances from other point en-
coders appear more scattered. This highlights POLY2VEC’s
superior ability to preserve spatial distance relationships
across various geometry types. Methods like DIRECT are

6

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

Figure 3: Distance scatter plots of point-polygon pairs on Singapore dataset for different encoders.

overly simplistic, while approaches such as TILE, GRID, and
WRAP introduce location distortions through discretization
or periodic transformations, affecting the distance preser-
vation. By leveraging the Fourier transform, POLY2VEC
effectively captures both the positions and relative spatial
relationships of the geometry pairs, enabling it to implicitly
encode distance as a core property into its embeddings. A
table reporting the Mean Absolute Error across baselines,
and the additional figures, is provided in Appendix A.4.6.

4.2. Integration In an End-to-End GeoAI Pipeline

The section addresses RQ3, demonstrating the benefits of
integrating POLY2VEC into an existing GeoAI workflow.

Dataset. We utilize the same dataset as in Section 4.1. The
regions for both cities are extracted using the administrative
boundaries of Singapore Subzones and NYC Census Tracts.

Baseline. We adopt REGIONDCL (Li et al., 2023), an
unsupervised urban region representation learning frame-
work that uses buildings and POIs from OSM for land
use inference (predicting urban functional distributions)
and population prediction (estimating region population).
REGIONDCL encodes buildings by transforming their foot-
prints into images and extracting features using ResNet18
while using categorical features for POIs. To address the loss
of location information, REGIONDCL employs a distance-
biased transformer, which introduces a bias in the self-
attention mechanism to prioritize closer objects.

Settings. We evaluate three variants: (1) REGIONDCL,
the original framework, (2) REGIONDCL w/o distance-bias
removes the distance-biased term, and (3) REGIONDCL w/
Poly2Vec removes the distance-biased term and replaces the
encodings with POLY2VEC. The training and evaluation
strategies remain unchanged across the variants following
the original work. For land use inference, we report L1-
distance, KL-divergence, and cosine similarity metrics. For
population prediction, we report MAE, root mean squared
error (RMSE), and coefficient of determination (R2).

Results. The results for both tasks are presented in Table 4.
Removing the distance-bias term from REGIONDCL leads
to a noticeable drop in performance, emphasizing the im-
portance of encoding the spatial location and alignment of
objects for accurate land use and population predictions.

When POLY2VEC is added, the performance improves sig-
nificantly. This shows that POLY2VEC can adequately cap-
ture the shape and orientation of objects, similar to the
initial image-based features, while also benefiting from the
inclusion of object’s location. Overall, POLY2VEC encodes
spatial information directly into its embeddings, removing
the need for additional mechanisms like the distance-bias
term. This improves performance while simplifying the
pipeline, showcasing the task flexibility of POLY2VEC and
its potential for effective integration into GeoAI workflows.

4.3. Ablation Study

This section addresses RQ4, highlighting the benefits of the
proposed learned fusion module.

Settings. We include three variants: (1) w/mag uses only
the Fourier transform magnitude, (2) w/phase uses only the
phase, and (3) w/concat combines both via concatenation.

 Singapore New York0.40
0.52
0.64
0.76
0.88
1.00

A
cc
ur
ac
y

(a) Topological relationship
 classification

 Singapore New York0.40
0.52
0.64
0.76
0.88
1.00

A
cc

ur
ac

y

(b) Directional relationship
 classification

 Singapore New York0.00
0.05
0.10
0.15
0.20
0.25

M
A

E

(c) Distance estimation

w/ Mag w/ Phase w/ concat Poly2Vec

Figure 4: Ablation study for the point-polygon dataset.

Results. As shown in Figure 4, among the variants, w/ mag
performs the worst across all tasks, particularly in direc-
tional relationship classification, as the Fourier transform
magnitude primarily captures shape, which is insufficient on
its own to address these tasks. In contrast, w/ phase, which
encodes location information, performs better since relative
location, here, is more crucial. Combining both through w/
concat shows improvements, highlighting the importance of
integrating both shape and location information. In contrast,
POLY2VEC outperforms all variants by employing a learned
fusion strategy that adaptively balances the contribution of
magnitude and phase based on the task and geometry type.
Particularly, this strategy benefits POLY2VEC more in tasks
such as point-related distance estimation, where points lack
spatial extent, and thus magnitude should contribute signifi-
cantly less than the phase containing location information.

7

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

Table 4: Comparison of methods for Land Use Classification and Population Prediction. Best values are highlighted.

Land Use Classification

Methods Singapore New York

L1 ↓ KL ↓ Cosine ↑ L1 ↓ KL ↓ Cosine ↑
RegionDCL 0.498 ± 0.038 0.294 ± 0.047 0.879 ± 0.021 0.418 ± 0.012 0.229 ± 0.013 0.912 ± 0.006

RegionDCL w/o distance-bias 0.558 ± 0.043 0.369 ± 0.067 0.844 ± 0.023 0.439 ± 0.012 0.244 ± 0.012 0.904 ± 0.005

RegionDCL w/ Poly2Vec 0.484 ± 0.021 0.278 ± 0.025 0.881 ± 0.012 0.397 ± 0.010 0.212 ± 0.011 0.923 ± 0.007

Population Prediction

Methods Singapore New York

MAE ↓ RMSE ↓ R2 ↑ MAE ↓ RMSE ↓ R2 ↑
RegionDCL 5807.54 ± 522.74 7942.74 ± 779.44 0.427 ± 0.108 5020.20 ± 216.63 6960.51 ± 282.35 0.575 ± 0.039

RegionDCL w/o distance-bias 6018.94 ± 641.71 8214.58 ± 931.11 0.385 ± 0.087 5293.04 ± 277.31 7348.86 ± 374.62 0.532 ± 0.030

RegionDCL w/ Poly2Vec 4957.58 ± 506.02 6874.47 ± 851.73 0.561 ± 0.117 4602.75 ± 179.66 6393.38 ± 279.70 0.621 ± 0.037

5. Related Work
Existing geometry encoding approaches often focus on one
shape type, with point encoders receiving the most atten-
tion. Direct point encoding methods simply feed raw co-
ordinates into neural networks but fail to capture details of
location distributions (Xu et al., 2018; Chu et al., 2019). Dis-
cretization methods assign points to predefined grid cells,
as seen in approaches leveraging location context for im-
age classification (Tang et al., 2015; Berg et al., 2014), but
struggle with fixed resolution and imprecise representations.
Sinusoidal methods encode normalized coordinates using
sinusoidal functions, such as WRAP, which captures cyclic
patterns (Mac Aodha et al., 2019). Extensions like multi-
scale encoder (Zhong et al., 2019) introduce multiple si-
nusoidal scales. THEORY improves this by computing the
dot product of coordinates with unit vectors separated by
120◦ (Mai et al., 2020). There are also point encoders that
jointly model location and neighborhood features. (Qi et al.,
2017; Yin et al., 2019; Zhou & Tuzel, 2018).

Unlike points, there are no dedicated approaches for encod-
ing polylines in their generic form. The closest relevant
work lies in trajectory encoding, where trajectories are often
represented as ordered sequences of points. Most such ap-
proaches rely on discretization. For instance, Li et al. (2018)
uses grid-based encoding, training an RNN on degraded data
to infer missing information and embedding grid cells to
capture relative spatial positions. Other approaches directly
use coordinates, leveraging sequential models (i.e. RNNs)
to process the encodings (Feng et al., 2018; Xue et al., 2021;
Rao et al., 2020; Xu et al., 2018), but require strict sequential
ordering and may overlook geometric relationships.

Polygon encoding has gained significant attention. Veer et al.
(2018) employ elliptic Fourier descriptors to approximate
polygon outlines and utilize bidirectional LSTM and 1D
CNNs to encode vertex sequences. Mai et al. (2023b) used

a 1D ResNet architecture with circular padding for loop
origin invariance. Other approaches use the non-uniform
Fourier transform (NUFT) to map polygons to the spec-
tral domain, converting them back into images via inverse
Fourier transforms (IDFT), though this suffers from the limi-
tations of grid-based approaches (Jiang et al., 2019a;b). Mai
et al. (2023b) refine this approach by omitting the IDFT.
POLYGONGNN (Yu et al., 2024) encodes multipolygons,
modeling their shape details and inter-polygonal relation-
ships through heterogeneous visibility graphs.

While effective for specific geometry types, existing ap-
proaches are devised for specific geospatial objects. En-
coding heterogeneous coordinate-based data remains a chal-
lenge, as current methods, in such cases, either use separate
encoders for different object types, thereby adding complex-
ity, or convert geometries into known formats (i.e., image,
text), leading to a loss of spatial precision. This limitation
is particularly critical for GeoAI models that aim to in-
corporate coordinate-based geospatial data as an additional
modality (Zhang et al., 2024; Mai et al., 2023a). POLY2VEC
addresses this gap by uniformly encoding points, polylines,
and polygons within the same framework, offering a level
of versatility not demonstrated by prior methods.

6. Conclusion and Future Work
We proposed POLY2VEC, a unified encoding framework for
geospatial objects that preserves essential spatial properties,
including topology, directionality, and distance. By out-
performing object-specific baselines and improving down-
stream tasks like population prediction and land use infer-
ence, POLY2VEC demonstrates its versatility and effective-
ness in GeoAI pipelines. Future work will explore extending
POLY2VEC to higher-dimensional geometries, including 3D
shapes, and its integration into Geo-Foundation models as a
unified representation for coordinate data modalities.

8

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

7. Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here. Our improved representation
of 2D geometry for deep models could lead to more accu-
rate, versatile GeoAI applications, leading to better under-
standing the Earth and improvements for the environment,
transportation efficiency, and access equity.

References
Adams, B., McKenzie, G., and Gahegan, M. Frankenplace:

interactive thematic mapping for ad hoc exploratory
search. In Proceedings of the 24th international con-
ference on world wide web, pp. 12–22, 2015.

Balsebre, P., Huang, W., Cong, G., and Li, Y. City founda-
tion models for learning general purpose representations
from openstreetmap. In Proceedings of the 33rd ACM
International Conference on Information and Knowledge
Management, pp. 87–97, 2024.

Basiri, A., Haklay, M., Foody, G., and Mooney, P. Crowd-
sourced geospatial data quality: Challenges and future
directions, 2019.

Berg, T., Liu, J., Woo Lee, S., Alexander, M. L., Jacobs,
D. W., and Belhumeur, P. N. Birdsnap: Large-scale fine-
grained visual categorization of birds. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 2011–2018, 2014.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., et al. On the opportunities and risks
of foundation models. arXiv preprint arXiv:2108.07258,
2021.

Chu, G., Potetz, B., Wang, W., Howard, A., Song, Y.,
Brucher, F., Leung, T., and Adam, H. Geo-aware net-
works for fine-grained recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
Workshops, pp. 0–0, 2019.

Clementini, E., Di Felice, P., and Van Oosterom, P. A small
set of formal topological relationships suitable for end-
user interaction. In International symposium on spatial
databases, pp. 277–295. Springer, 1993.

Couclelis, H. Artificial intelligence in geography: Conjec-
tures on the shape of things to come. The professional
geographer, 38(1):1–11, 1986.

Feng, J., Li, Y., Zhang, C., Sun, F., Meng, F., Guo, A.,
and Jin, D. Deepmove: Predicting human mobility with

attentional recurrent networks. In Proceedings of the
2018 world wide web conference, pp. 1459–1468, 2018.

Gao, S., Hu, Y., and Li, W. Handbook of geospatial artificial
intelligence, 2023.

Gaskill, J. D. Linear systems, Fourier transforms, and optics.
John Wiley & Sons, 1978.

Huang, J., Wang, H., Sun, Y., Shi, Y., Huang, Z., Zhuo,
A., and Feng, S. Ernie-geol: A geography-and-language
pre-trained model and its applications in baidu maps. In
Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 3029–3039,
2022.

Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri,
B. Geoai: spatially explicit artificial intelligence tech-
niques for geographic knowledge discovery and beyond,
2020.

Jiang, C., Lansigan, D., Marcus, P., Nießner, M., et al. Ddsl:
Deep differentiable simplex layer for learning geometric
signals. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8769–8778, 2019a.

Jiang, C., Wang, D., Huang, J., Marcus, P., Nießner, M.,
et al. Convolutional neural networks on non-uniform ge-
ometrical signals using euclidean spectral transformation.
arXiv preprint arXiv:1901.02070, 2019b.

Jokar Arsanjani, J., Zipf, A., Mooney, P., and Helbich, M.
An introduction to openstreetmap in geographic infor-
mation science: Experiences, research, and applications.
OpenStreetMap in GIScience: Experiences, research, and
applications, pp. 1–15, 2015.

Kyrkou, C., Kolios, P., Theocharides, T., and Polycarpou,
M. Machine learning for emergency management: A
survey and future outlook. Proceedings of the IEEE, 111
(1):19–41, 2022.

Lee, J.-G. and Kang, M. Geospatial big data: challenges
and opportunities. Big Data Research, 2(2):74–81, 2015.

Li, X., Zhao, K., Cong, G., Jensen, C. S., and Wei, W. Deep
representation learning for trajectory similarity computa-
tion. In 2018 IEEE 34th international conference on data
engineering (ICDE), pp. 617–628. IEEE, 2018.

Li, Y., Yu, R., Shahabi, C., and Liu, Y. Diffusion con-
volutional recurrent neural network: Data-driven traffic
forecasting. arXiv preprint arXiv:1707.01926, 2017.

Li, Y., Huang, W., Cong, G., Wang, H., and Wang, Z. Urban
region representation learning with openstreetmap build-
ing footprints. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pp. 1363–1373, 2023.

9

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

Mac Aodha, O., Cole, E., and Perona, P. Presence-only geo-
graphical priors for fine-grained image classification. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 9596–9606, 2019.

Mai, G., Janowicz, K., Yan, B., Zhu, R., Cai, L., and
Lao, N. Multi-scale representation learning for spa-
tial feature distributions using grid cells. arXiv preprint
arXiv:2003.00824, 2020.

Mai, G., Huang, W., Sun, J., Song, S., Mishra, D., Liu, N.,
Gao, S., Liu, T., Cong, G., Hu, Y., et al. On the opportu-
nities and challenges of foundation models for geospatial
artificial intelligence. arXiv preprint arXiv:2304.06798,
2023a.

Mai, G., Jiang, C., Sun, W., Zhu, R., Xuan, Y., Cai, L.,
Janowicz, K., Ermon, S., and Lao, N. Towards general-
purpose representation learning of polygonal geometries.
GeoInformatica, 27(2):289–340, 2023b.

Mirowski, P., Grimes, M., Malinowski, M., Hermann,
K. M., Anderson, K., Teplyashin, D., Simonyan, K.,
kavukcuoglu, k., Zisserman, A., and Hadsell, R. Learning
to navigate in cities without a map. In Bengio, S., Wal-
lach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.
cc/paper_files/paper/2018/file/
e034fb6b66aacc1d48f445ddfb08da98-Paper.
pdf.

Papamichalopoulos, M., Papadakis, G., Mandilaras, G.,
Siampou, M., Mamoulis, N., and Koubarakis, M. Three-
dimensional geospatial interlinking with jedai-spatial.
Journal of Web Semantics, 81:100817, 2024.

Punjani, D., Singh, K., Both, A., Koubarakis, M., Angelidis,
I., Bereta, K., Beris, T., Bilidas, D., Ioannidis, T., Karalis,
N., et al. Template-based question answering over linked
geospatial data. In Proceedings of the 12th workshop on
geographic information retrieval, pp. 1–10, 2018.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep
learning on point sets for 3d classification and segmenta-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 652–660, 2017.

Rao, J., Gao, S., Kang, Y., and Huang, Q. Lstm-trajgan: A
deep learning approach to trajectory privacy protection.
arXiv preprint arXiv:2006.10521, 2020.

Smith, T. R. Artificial intelligence and its applicability to
geographical problem solving. The Professional Geogra-
pher, 36(2):147–158, 1984.

Sun, J., Zheng, Y., Hao, J., Meng, Z., and Liu, Y. Continu-
ous multiagent control using collective behavior entropy
for large-scale home energy management. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 922–929, 2020.

Tang, K., Paluri, M., Fei-Fei, L., Fergus, R., and Bourdev,
L. Improving image classification with location context.
In Proceedings of the IEEE international conference on
computer vision, pp. 1008–1016, 2015.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

Veer, R. v., Bloem, P., and Folmer, E. Deep learning for
classification tasks on geospatial vector polygons. arXiv
preprint arXiv:1806.03857, 2018.

Wu, S., Yan, X., Fan, X., Pan, S., Zhu, S., Zheng, C., Cheng,
M., and Wang, C. Multi-graph fusion networks for urban
region embedding. arXiv preprint arXiv:2201.09760,
2022.

Xu, Y., Piao, Z., and Gao, S. Encoding crowd interaction
with deep neural network for pedestrian trajectory predic-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 5275–5284, 2018.

Xue, H., Salim, F., Ren, Y., and Oliver, N. Mobtcast: Lever-
aging auxiliary trajectory forecasting for human mobility
prediction. Advances in Neural Information Processing
Systems, 34:30380–30391, 2021.

Yin, Y., Liu, Z., Zhang, Y., Wang, S., Shah, R. R., and
Zimmermann, R. Gps2vec: Towards generating world-
wide gps embeddings. In Proceedings of the 27th ACM
SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pp. 416–419, 2019.

Yu, D., Hu, Y., Li, Y., and Zhao, L. Polygongnn: Represen-
tation learning for polygonal geometries with heteroge-
neous visibility graph. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 4012–4022, 2024.

Zahn, C. T. and Roskies, R. Z. Fourier descriptors for plane
closed curves. IEEE Transactions on computers, 100(3):
269–281, 1972.

Zhang, M., Li, T., Li, Y., and Hui, P. Multi-view joint
graph representation learning for urban region embed-
ding. In Proceedings of the twenty-ninth international
conference on international joint conferences on artificial
intelligence, pp. 4431–4437, 2021.

Zhang, W., Han, J., Xu, Z., Ni, H., Liu, H., and Xiong,
H. Urban foundation models: A survey. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 6633–6643, 2024.

10

https://proceedings.neurips.cc/paper_files/paper/2018/file/e034fb6b66aacc1d48f445ddfb08da98-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/e034fb6b66aacc1d48f445ddfb08da98-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/e034fb6b66aacc1d48f445ddfb08da98-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/e034fb6b66aacc1d48f445ddfb08da98-Paper.pdf

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

Zhong, E. D., Bepler, T., Davis, J. H., and Berger, B. Recon-
structing continuous distributions of 3d protein structure
from cryo-em images. arXiv preprint arXiv:1909.05215,
2019.

Zhou, Y. and Tuzel, O. Voxelnet: End-to-end learning for
point cloud based 3d object detection. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 4490–4499, 2018.

11

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

A. Appendix
A.1. Geospatial Objects Definitions

Definition 2 (Point). A point is a zero-dimensional geomet-
ric entity in R2, defined by a single coordinate (x, y), where
x, y ∈ R. A point represents a specific location in the plane
but has no extent, size, nor dimension.

Definition 3 (Line Segment). A line segment is a one-
dimensional geometric object in R2, defined as a straight
line segment between two distinct endpoints p1 = (x1, y1)
and p2 = (x2, y2).

Definition 4 (Polyline). A polyline is a one-dimensional
object in R2, represented by an array P ∈ RN×2, where
each row is a point pi = (xi, yi). It consists of connected
line segments formed by consecutive points pi and pi+1 for
1 ≤ i < N , with p1 ̸= pN .

Definition 5 (Polygon). A polygon is a two-dimensional
geometric object in R2, represented as a closed sequence of
points forming its boundary. It is defined by an array P ∈
RN×2, where each row corresponds to a point (xi, yi) ∈ R2

and (x1, y1) = (xN , yN).

A.2. Analytical Calculations of Fourier Transform

A.2.1. FOURIER TRANSFORM OF A POINT

By representing a point p = (xp, yp) ∈ R2 as a 2D Dirac
delta function fp(x, y) = δ(x − xp, y − yp) the Fourier
transform of fp(x, y) can be derived as follows:

Fp(u, v) = F{fp(x, y)}

=

∫ ∞

−∞

∫ ∞

−∞
fp(x, y)e

−j2π(ux+vy)dx dy

=

∫ ∞

−∞

∫ ∞

−∞
δ(x− xp, y − yp)e

−j2π(ux+vy)dx dy

= e−j2π(xpu+ypv)

where (u, v) are the frequency components.

A.2.2. FOURIER TRANSFORM OF A POLYLINE

Canonical line segment. We express the canonical line
segment lc extending from a = (− 1

2 , 0) to b = (12 , 0), as
flc(x, y) = rect(x)δ(y). where rect(x) restricts the ridge to
|x| ≤ 1

2 , and δ(y) represents a Dirac delta function along
the x-axis. The Fourier transform of flc(x, y) is :

Flc(u, v) = F{flc(x, y)}

=

∫ ∞

−∞

∫ ∞

−∞
flc(x, y)e

−j2π(ux+vy) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
rect(x)δ(y)e−j2π(ux+vy) dx dy

Using the sifting property of the Dirac delta function, the
integral over y evaluates to the value of the integrand at
y = 0:

Flc(u, v) =

∫ ∞

−∞
rect(x)e−j2πuxe−j2πv(0) dx

=

∫ ∞

−∞
rect(x)e−j2πux dx

= sinc(u)

where (u, v) are the frequency components and v = 0.

Arbitrary line segment. We consider an arbitrary line
segment l with endpoints q = (xq, yq) and r = (xr, yr),
to compute the Fl(u, v), we map it to the canonical line
segment lc using affine transformation. For this purpose, we
introduce an auxiliary point c = (12 , 1) at the structure of lc
so that it is not colinear with ab. This point maps to another
auxiliary point s introduced at the arbitrary line segment
l. The auxiliary point s is defined as s = r + n, where
n = (yq − yr, xr − xq)

⊤, representing a 90◦ clockwise
rotation of the vector r− q. Note that the vectors qr and rs
are the same length.

Given all the above, the affine transformation matrix A is
defined as:

A =

a1 b1 c1
a2 b2 c2
0 0 1

Then the values of A are computed as follows:

A [q r s] = [a b c]

A = [a b c][q r s]−1

=

− 1
2

1
2

1
2

0 0 1
0 0 1

xq xr xr + yq − yr
yq yr yr + xr − xq

1 1 1

−1

= D

−xq + xr −yq + yr
(x2

q+y2
q−x2

r−y2
r)

2
yq − yr −xq + xr −yqxr + xqyr

0 0 1
D

where

|D| = det(A) =
1

(xq − xr)2 + (yq − yr)2

is the determinant of A.

Following the affine Fourier transform property from Eq. (3),
the Fourier transform of an arbitrary line segment l with
endpoints (xq, yq) and (xr, yr) is:

Fl(u, v) = F{flc(x, y)}

=
1

|det(A)|
e−j2πc⊤A−⊤uF (A−⊤u)

12

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

which can be rewritten as:

Fl(u, v) =

=
1

|D|
e−j2π(x0u+y0v)F

(
b2u− a2v

|D|
,−b1u+ a1v

|D|

)
(15)

where x0 = 1
|D| (b1c2 − b2c1) and y0 = 1

|D| (a2c1 − a1c2).

By substituting the specific values into Eq. (15), Fl(u, v)
can be simplified to:

Fl(u, v) =
1

(xq − xr)2 + (yq − yr)2

[
e−j2π

(
xq+xr

2 u+
yq+yr

2 v
)

sinc
(
(xr − xq)u+ (yr − yq)v

)]
A.2.3. FOURIER TRANSFORM OF A POLYGON

Isosceles canonical right triangle. The canonical isosceles
right triangle c with vertices a = (0, 0), b = (1, 0), and
c = (1, 1), is represented by the function f

c
(x, y) which

equals 1 inside the triangle and 0 otherwise.

The Fourier transform of f
c
(x, y) is computed as:

F
c
(u, v) = F{f

c
(x, y)}

=

∫ ∫
f

c
(x, y)e−j2π(ux+vy) dy dx

=

∫ 1

0

∫ x

0

e−j2π(ux+vy) dy dx

=

∫ 1

0

1

−j2πv

(
e−j2π(u+v)x − e−j2πux

)
dx

=
1

−j2πv

[∫ 1

0

e−j2π(u+v)x dx−
∫ 1

0

e−j2πux dx

]
=

1

4π2v(u+ v)

[
(u+ v)e−j2πu − ue−j2π(u+v) − v

]
(16)

Using Euler’s formula (ejθ = cos θ + j sin θ), we can ex-
pand Eq. (16) to:

F c(u, v) =
1

4π2uv(u+ v)

[(
(u+ v) cos(2πu)

− u cos(2π(u+ v))− v
)
− j

(
(u+ v) sin(2πu)

− u sin(2π(u+ v))
)]

This equation is undefined for some values of (u, v). We
present the Fourier transform for each special case:

• F
c
(0, 0) =

1

2

• F
c
(0, v) = − 1

4π2v2
(
j2πv + cos(2πv)

− j sin(2πv)− 1
)

• F c(u, 0) =
1

4π2u2

[(
cos(2πu) + 2πu sin(2πu)− 1

)
− j

(
sin(2πu)− 2πu cos(2πu)

)]
• F

c
(−v, v) = − 1

4π2v2
(
− j2πv + cos(2πv)

+ j sin(2πv)− 1
)

Arbitrary triangle. We calculate the Fourier transform of
an arbitrary triangle ∆, with vertices q, r, s by using the
affine transformation property. To that extent the affine
transformation matrix A is defined as:

A =

a1 b1 c1
a2 b2 c2
0 0 1

Then the values of A are computed as follows:

A [q r s] = [a b c]

A = [a b c][q r s]−1

=

0 1 1
0 0 1
1 1 1

xq xr xr + yq − yr
yq yr yr + xr − xq

1 1 1

−1

= D

ys − yr xr − xs yq(xs − xr) + xq(yr − ys)
yq − yr xr − xq xqyr − yqxr

0 0 D

where

|D| = 1

xq(yr − ys) + xr(ys − yq) + xs(yq − yr)

is the determinant of A.

If the area of ∆ is α, then D = 1
2α .

Finally the Fourier transform F∆(u, v) can be calculated by
substituting the affine transform parameters into Eq. (3).

For the case of (0, 0) we get that :

F∆(0, 0) =
1

D
F c(0, 0) =

1

2D
= α

which is the area of ∆.

A.3. Frequency Sampling Strategy

A.3.1. GEOMETRIC SAMPLING

We sample frequencies as a geometric series to balance the
contribution of low and high-frequency frequency compo-

13

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

nents. Formally,

fi = fmin · ρi, i = 0, 1, . . . ,W − 1

where fi is the i-th frequency, fmin, fmax correspond to the
minimum and maximum frequencies and W is the number
of sampled frequencies in each dimension. ρi is the step

ratio and is defined as ρi =
(

fmax

fmin

) 1
(W−1)

.

Using this sequence, we construct a 2D meshgrid of fre-
quencies, denoted as (U,V), centered around zero. Due to
the Hermitian symmetry property of the Fourier transform,
we only compute frequencies for half of the plane.

While uniform sampling is an alternative, previous studies
suggest geometric sampling is better suited for tasks like
ours, as it naturally balances the significance of low- and
high-frequency components (Mai et al., 2020; 2023b).

A.3.2. ADDITIONAL EXPERIMENTS ON LEARNED
FREQUENCY SAMPLING

 Singapore New York0.0
0.2
0.4
0.6
0.8
1.0

A
cc
ur
ac
y

(a) Topological relationship
 classification

 Singapore New York0.0
0.2
0.4
0.6
0.8
1.0

A
cc
ur
ac
y

(b) Directional relationship
 classification

 Singapore New York0.00
0.01
0.02
0.03
0.04
0.05

M
A
E

(c) Distance estimation

learned sampling geometric frequency mapping

Figure 5: The effect of frequency sampling strategy on
point-polygon pairs.
To investigate whether learning the frequency values would
improve performance, we conducted an experiment where
the frequencies were treated as learnable parameters and
optimized alongside the model. Our results are reported in
Figure 5. We observe that learning the frequencies does not
yield significant improvements over fixing the frequencies in
any of the tasks. This suggests that the geometric sampling
approach is sufficiently effective for balancing low- and
high-frequency contributions, and learning the frequencies
does not provide additional benefits for the tasks considered.

A.4. Supplementary Experimental Study

A.4.1. DATASET DETAILS

We utilized publicly available OpenStreetMap (OSM)
datasets for Singapore and New York, obtained from Geo-
fabrik8 in .osm.pbf format. Geospatial objects, includ-
ing POIs, roads, and buildings, were extracted using OSM-
specific tags (amenity, shop, tourism, leisure for POIs, mo-
torway, trunk, primary, secondary for roads, and building for
buildings). Region partitions were derived from Singapore

8https://download.geofabrik.de/

Subzones9 and NYC Census Tracts10. Dataset statistics are
presented in Table 5.

City # POIs # roads # buildings # regions

Singapore 4,347 45,634 109,877 304

New York 14,943 139,512 1,153,088 2,324

Table 5: Statistics of the Singapore and New York datasets.

Labels for the land use classification task were sourced
from the Singapore Master Plan 201911 and NYC Map-
PLUTO12. Following previous approaches (Li et al., 2023),
we merge the fine-grained land use classes into five major
categories, including Residential, Industrial, Commercial,
Open Space, and Others. Population estimation labels
were obtained from WorldPop13 for both cities.

For the remaining tasks, the labels are generated manually.
Specifically, for the topological classification task, the num-
ber of relationships depends on the types of objects being
compared. Point/polyline, point/polygon, and polyline/poly-
line pairs can belong to one of two classes: disjoint or not
disjoint. Polyline/polygon pairs, however, have four distinct
relationship classes, while polygon/polygon pairs include
six classes, following the DE9IM model. To eliminate redun-
dancy, we remove equivalent relationships such as within
and contains, keeping only one representative relationship
from each pair of equivalents. To create a balanced dataset
across all relationship classes, we generate geometry pairs
by slightly adjusting the positions of the original geospatial
objects and randomly selecting 5,000 pairs for each class
within a group.

For the directional relationship classification task, we
classify the spatial relationships between two geometries
into one of 16 compass directions based on their angular
relationship. These 16 classes are derived from the cardinal
and intercardinal directions: north, northeast, east, south-
east, south, southwest, west, northwest, and their boundary
counterparts (e.g., north-northeast, east-northeast). Labels
are computed based on the relative orientation of the ge-
ometries’ centroids. Similar to the topological classification
task, we randomly select 5,000 pairs for each directional
class to ensure a balanced dataset.

9https://data.gov.sg/collections/1749/
view

10https://www.nyc.gov/site/
planning/data-maps/open-data/
census-download-metadata.page

11https://data.gov.sg/dataset/
master-plan-2019-land-use-laye

12https://www.nyc.gov/site/planning/
data-maps/open-data/dwn-pluto-mappluto.page

13https://hub.worldpop.org/geodata/
listing?id=77

14

https://download.geofabrik.de/
https://data.gov.sg/collections/1749/view
https://data.gov.sg/collections/1749/view
https://www.nyc.gov/site/planning/data-maps/open-data/census-download-metadata.page
https://www.nyc.gov/site/planning/data-maps/open-data/census-download-metadata.page
https://www.nyc.gov/site/planning/data-maps/open-data/census-download-metadata.page
https://data.gov.sg/dataset/master-plan-2019-land-use-laye
https://data.gov.sg/dataset/master-plan-2019-land-use-laye
https://www.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page
https://www.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page
https://hub.worldpop.org/geodata/listing?id=77
https://hub.worldpop.org/geodata/listing?id=77

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

For the distance estimation task, labels are computed us-
ing the actual spatial distance between the centroids of the
two geometries. The spatial distance is calculated using Eu-
clidean distance for planar geometries, for topological and
directional relationship classification. We randomly select
10,000 geometry pairs for this task.

A.4.2. BASELINES

We now describe the baseline methods used to evaluate
POLY2VEC.

1. Point encoders

• DIRECT: Feeds directly the geometry’s input coordinates
to the downstream model, without any encoding mechanism.

• TILE: Partitions the study area into a uniform grid with
cells of size c. Each grid cell is assigned an embedding,
which serves as the encoding for the points assigned to that
cell (Berg et al., 2014; Adams et al., 2015; Tang et al., 2015).

• WRAP: Uses a wrapping mechanism [sin(πp); cos(πp)]
to encode a point p (Mac Aodha et al., 2019).

• GRID: Follows the Transformer’s position encoding
model (Vaswani, 2017), representing spatial positions
through multi-scale sine and cosine transformations. At
each scale s, the encoding is given by PE

(g)
s (p) =[

cos

(
p

λmin·g
s

S−1

)
, sin

(
p

λmin·g
s

S−1

)]
, where g = λmax

λmin

controls the frequency range. The final encoding concate-
nates these multi-scale representations, capturing spatial
structures across different resolutions (Mai et al., 2020).

• THEORY: Encodes spatial positions using dot prod-
ucts with unit vectors separated by 120◦. At each
scale s, the encoding is given by PE

(t)
s,j(p) =[

cos

(
⟨p,aj⟩

λmin·g
s

S−1

)
, sin

(
⟨p,aj⟩

λmin·g
s

S−1

)]
∀j ∈ {1, 2, 3},

where a1 = [1, 0]T , a2 = [− 1
2 ,

√
3
2]T , and a3 =

[− 1
2 ,−

√
3
2]T are unit vectors spaced at 120◦. The final en-

coding concatenates these multi-scale representations across
all vectors (Mai et al., 2020).

2. Polyline encoders

• T2VEC: First uniformly partitions the whole space into
grid cells, and map each trajectory point into the grid cell.
Through this tokenization, each trajectory is converted to a
sequence of grid cell IDs. Then adopts a GRU encoder to
encode the sequence and an end-to-end training paradigm
that amis to reconstruct the original trajectories from the
distorted/downsampled ones (Li et al., 2018).

3. Polygon encoders

• RESNET1D: Adapts the 1D variant of the Residual Net-

work (ResNet) architecture, incorporating circular padding
to effectively encode the exterior vertices of polygons (Mai
et al., 2023b).

• NUFTSPEC: Transforms polygons into the spectral
domain using the Non-Uniform Fourier Transformation
(NUFT) and j-simplex meshes and then learns polygon
embeddings from these spectral features using MLPs (Mai
et al., 2023b).

A.4.3. HYPERPARAMETER CONFIGURATION

The coordinates of the input geometries are normalized to
lie within the range [−1, 1]× [−1, 1], based on the bound-
ing box of the corresponding area of interest. We set the
minimum frequency fmin = 0.1, the maximum frequency
fmax = 1.0 and W = 10, resulting in 210 frequencies. We
set the final size of the geometry embedding v to d = 32.
All the MLPs consist of two layers with ReLU activation
functions.

Hyperparameters of spatial reasoning tasks. For training
on the spatial reasoning tasks, we utilize the AdamW opti-
mizer and set the learning rate lr = 10−4 and weight decay
wd = 10−8. The batch size is set to 128, and the down-
stream models were trained for 20 epochs. The training,
validation, and testing ratios for the datasets corresponding
to these tasks is 60:20:20. All experiments were run 5 times
and we report average performances and standard deviation.

Hyperparameters of GeoAI tasks. We follow the same
hyperparameters as presented by Li et al. (2023), to keep
our comparison consistent.

Hyperparameters of other baselines. The implementation
of baselines follows the corresponding papers, along which
each method’s specific hyperparameters. The rest of hyper-
parameters related to downstream tasks are kept consistent
with our approach.

A.4.4. EXPERIMENTAL ENVIRONMENT

Our experiments are performed on a cluster node equipped
with an 18-core Intel i9-9980XE CPU, 125 GB of memory,
and two 11 GB NVIDIA GeForce RTX 2080 Ti GPUs.
Furthermore, all neural network models are implemented
based on PyTorch version 2.3.0 with CUDA 11.8 using
Python version 3.9.19.

A.4.5. TRAINING DETAILS OF EVALUATION TASKS

We use cross entropy loss to train the downstream model
on the topological and directional relationship classification
tasks. The loss is defined as:

LCE(θ) = − 1

N

N∑
i=1

C∑
c=1

yi,c log(ŷi,c),

15

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

where N is the number of samples, C is the number of
classes (C = 2 for binary classification), yi,c ∈ {0, 1}
is the one-hot encoded ground-truth label for class c, and
ŷi,c ∈ [0, 1] is the predicted probability for class c.

For the distance preservation task, the model is evaluated
using the mean squared error (MSE) loss, defined as:

LMSE(θ) =
1

N

N∑
i=1

(yi − ŷi)
2
,

where yi is the ground-truth distance for the i-th sample,
and ŷi is the predicted distance.

We note that for the population prediction and land use clas-
sification tasks, POLY2VEC is used as input to the pretrained
urban region representation model REGIONDCL (Li et al.,
2023), and thus we follow the same training and evaluation
procedure as was originally presented by the authors.

A.4.6. SUPPLEMENTARY RESULTS OF SPATIAL
REASONING TASKS

We report each model’s performance on topological and
directional relationship classification in Table 7 and Table 8,
respectively, including Precision, Recall, and F1. MAE for
the distance preservation task is provided in Table 6. We also
present the rest of the distance scatter Figures 10,11,12,13,
14. We overall observe similar trends as in the main evalua-
tion.

Table 6: Overall model performance on distance estimation.
Best and second best are highlighted.

Dataset Model point-
point

point-
polyline

point-
polygon

Singapore

DIRECT 0.088±0.041 0.093±0.013 0.084±0.021

TILE 0.252 ±0.002 0.177±0.007 0.157±0.001

WRAP 0.085±0.009 0.106±0.012 0.102±0.007

GRID 0.087±0.006 0.107±0.003 0.108±0.002

THEORY 0.065±0.019 0.083±0.027 0.079±0.028

POLY2VEC 0.016±0.001 0.043±0.011 0.029±0.009

New York

DIRECT 0.075±0.017 0.126±0.041 0.115±0.033

TILE 0.271±0.005 0.170±0.004 0.189±0.004

WRAP 0.106±0.003 0.148±0.001 0.146±0.009

GRID 0.073±0.001 0.124±0.004 0.118±0.011

THEORY 0.068±0.008 0.089±0.074 0.102±0.061

POLY2VEC 0.030±0.007 0.049±0.004 0.042±0.021

A.4.7. SUPPLEMENTARY ABLATION STUDIES

We’ve shown the effect of learned fusion on point-polygon
tasks in Section 4.3. We demonstrate its effect on the rest of
spatial reasoning tasks in Figures 6, 7, 8, and 9. We again
observe similar trends as reported in the main evaluation.

 Singapore New York0.0
0.2
0.4
0.6
0.8
1.0

A
cc
ur
ac
y

(a) Directional relationship
 classification

 Singapore New York0.00
0.11
0.22
0.33
0.44
0.55

M
A
E

(b) Distance estimation

w/ Mag w/ Phase w/ concat Poly2Vec

Figure 6: Ablation study on point-point pairs.

 Singapore New York0.40
0.52
0.64
0.76
0.88
1.00

A
cc
ur
ac
y

(a) Topological relationship
 classification

 Singapore New York0.40
0.52
0.64
0.76
0.88
1.00

A
cc
ur
ac
y

(b) Directional relationship
 classification

 Singapore New York0.0
0.1
0.2
0.3
0.4
0.5

M
A
E

(c) Distance estimation

w/ Mag w/ Phase w/ concat Poly2Vec

Figure 7: Ablation study on point-polyline pairs.

 Singapore New York0.2
0.3
0.4
0.5
0.6
0.7

A
cc
ur
ac
y

(a) Topological relationship
 classification

 Singapore New York0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y
(b) Directional relationship

 classification

w/ Mag w/ Phase w/ concat Poly2Vec

Figure 8: Ablation study on polyline-polygon pairs.

 Singapore New York0.2
0.3
0.4
0.5
0.6
0.7

A
cc
ur
ac
y

(a) Topological relationship
 classification

 Singapore New York0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

(b) Directional relationship
 classification

w/ Mag w/ Phase w/ concat Poly2Vec

Figure 9: Ablation study on polygon-polygon pairs.

A.4.8. PARAMETER STUDY

We conduct parameter study on three spatial reasoning tasks
to tune the hyperparameters including the embedding size
d, the learning rate lr, the number of samples in frequency
domain by adjusting fmin, fmax, W as follows.

The embedding size d. We train POLY2VEC with different
d in [16, 32, 64, 128, 256]. As shown in Tables 9, 10, and 11,

16

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

Table 7: Overall model Performance on topological relationship classification. Best and second best are highlighted.

Metric Methods
Singapore New York

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

Precision

RESNET1D - - - - 0.3980.018 - - - - 0.4210.051

NUFTSPEC - - - - 0.5880.041 - - - - 0.5620.032

T2VEC - - 0.7680.021 - - - - 0.7450.012 - -
DIRECT 0.8590.007 0.8310.017 0.6370.032 0.4150.037 0.328 0.04 0.8350.032 0.9330.007 0.6610.032 0.4980.003 0.4390.024

TILE 0.7350.039 0.7050.056 0.5050.007 0.4900.006 0.4390.005 0.6640.018 0.7890.005 0.5020.009 0.4940.074 0.4180.005

WRAP 0.8740.011 0.8650.015 0.6450.009 0.4530.028 0.4050.010 0.8790.015 0.9150.006 0.6550.013 0.5860.005 0.4050.010

GRID 0.7990.037 0.8410.010 0.6260.027 0.4050.066 0.2880.013 0.7680.034 0.9040.015 0.6580.014 0.5130.012 0.3550.017

THEORY 0.9030.037 0.8740.004 0.6510.009 0.4320.018 0.4780.023 0.8860.044 0.8930.017 0.7180.007 0.6020.008 0.4310.009

POLY2VEC 0.9130.007 0.9240.017 0.7790.001 0.5060.013 0.6940.007 0.9210.016 0.9790.021 0.7450.002 0.6310.017 0.6980.006

Recall

RESNET1D - - - - 0.4550.011 - - - - 0.4520.035

NUFTSPEC - - - - 0.5720.032 - - - - 0.5920.029

T2VEC - - 0.7320.024 - - - - 0.7180.032 - -
DIRECT 0.7920.012 0.8380.027 0.9970.019 0.4140.031 0.4500.014 0.8380.035 0.8880.004 0.9870.22 0.4970.003 0.4310.003

TILE 0.8940.035 0.6950.074 1.00.001 0.4630.008 0.4130.004 0.6590.009 0.7690.011 1.000.001 0.4990.039 0.4050.004

WRAP 0.9030.005 0.9010.033 0.9920.007 0.4770.012 0.3800.006 0.8940.030 0.8420.031 0.9860.005 0.5510.008 0.3800.006

GRID 0.9210.035 0.8480.014 0.9800.016 0.4650.007 0.3390.013 0.9330.045 0.8810.004 0.9950.002 0.5140.012 0.3820.035

THEORY 0.9860.028 0.9330.007 0.9720.012 0.4510.012 0.4670.015 0.9230.044 0.9120.017 0.7820.007 0.6150.008 0.4120.009

POLY2VEC 1.00.000 0.9740.023 1.00.000 0.4980.007 0.6970.003 1.00.000 0.9890.032 1.00.000 0.6380.009 0.6970.007

F1

RESNET1D - - - - 0.3990.017 - - - - 0.3990.041

NUFTSPEC - - - - 0.5740.013 - - - - 0.5810.021

T2VEC - - 0.7320.002 - - - - 0.7410.007 - -
DIRECT 0.8240.006 0.8340.031 0.7770.022 0.4020.027 0.3140.014 0.8360.004 0.9100.003 0.7920.027 0.4630.003 0.4030.013

TILE 0.8050.013 0.6940.017 0.6710.004 0.4120.009 0.3840.005 0.6610.008 0.7790.004 0.6680.008 0.4530.061 0.3690.003

WRAP 0.8880.005 0.8820.009 0.7810.008 0.4500.020 0.3390.006 0.8860.009 0.8760.019 0.7870.010 0.5170.005 0.3390.006

GRID 0.8550.007 0.8440.002 0.7640.015 0.4110.026 0.2670.018 0.8420.032 0.8920.006 0.7920.009 0.4630.046 0.3220.038

THEORY 0.9380.014 0.9030.004 0.7880.007 0.4380.012 0.4250.006 0.8830.044 0.8910.017 0.7260.007 0.5490.059 0.4190.009

POLY2VEC 0.9550.011 0.9480.008 0.8310.002 0.4830.013 0.6820.003 0.9590.008 0.9840.012 0.8540.002 0.5880.012 0.6790.005

Table 8: Overall model Performance on directional relationship classification. Best and second best are highlighted.

Metric Methods
Singapore New York

point-
point

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

point-
point

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

Precision

NUFTRESNET - - - - - 0.8280.009 - - - - - 0.7830.010

NUFTSPEC - - - - - 0.8320.021 - - - - - 0.7150.014

T2VEC - - - 0.2270.021 - - - - - 0.2320.012 - -
DIRECT 0.8820.006 0.8460.006 0.8470.005 0.8250.002 0.8130.005 0.7650.014 0.8800.003 0.7670.004 0.8430.002 0.6870.003 0.7940.003 0.7740.001

TILE 0.2590.001 0.2600.026 0.2860.038 0.3700.005 0.4660.001 0.4150.010 0.2930.001 0.2790.013 0.3220.005 0.2800.005 0.4960.002 0.3760.026

WRAP 0.8630.003 0.8100.007 0.8060.004 0.7900.002 0.8350.002 0.7890.001 0.8090.004 0.6840.002 0.7590.016 0.6100.021 0.7810.001 0.6670.007

GRID 0.8840.007 0.7330.007 0.7750.002 0.7080.001 0.6530.015 0.5450.144 0.8720.002 0.6050.001 0.6700.040 0.4410.003 0.7660.003 0.5140.074

THEORY 0.9080.017 0.8720.012 0.8630.004 0.8150.012 0.8380.006 0.7290.044 0.8810.017 0.7740.007 0.8090.008 0.6920.009 0.7890.005 0.5380.012

POLY2VEC 0.9280.016 0.9420.012 0.9180.004 0.9110.013 0.8980.021 0.8300.007 0.9210.006 0.8890.016 0.8750.004 0.8890.013 0.8530.007 0.7920.009

Recall

NUFTRESNET - - - - - 0.8190.010 - - - - - 0.7470.010

NUFTSPEC - - - - - 0.7920.003 - - - - - 0.6850.004

T2VEC - - - 0.2160.023 - - - - - 0.2530.032 - -
DIRECT 0.8790.006 0.8410.006 0.8450.006 0.8200.002 0.8300.005 0.7520.017 0.8770.004 0.7660.005 0.8360.002 0.6530.007 0.7840.003 0.6940.003

TILE 0.2530.001 0.2690.002 0.2730.008 0.3240.001 0.4540.001 0.3950.003 0.2480.001 0.2570.004 0.3160.005 0.2170.001 0.4660.001 0.3480.012

WRAP 0.8610.003 0.8040.009 0.8030.004 0.7820.003 0.8310.002 0.7790.001 0.8100.004 0.6690.001 0.7590.016 0.5980.018 0.7720.002 0.6020.006

GRID 0.8820.002 0.7290.007 0.7720.002 0.6990.001 0.6410.016 0.5330.139 0.8680.002 0.5900.002 0.6470.050 0.4370.002 0.7520.003 0.4830.078

THEORY 0.8830.024 0.8670.009 0.8550.004 0.8630.012 0.5020.012 0.8970.014 0.7830.021 0.7910.007 0.8230.008 0.7090.009 0.8030.005 0.5670.012

POLY2VEC 0.9460.017 0.9470.021 0.9330.011 0.9030.008 0.8380.022 0.8260.007 0.9230.017 0.8940.012 0.8860.024 0.8780.013 0.8750.011 0.7930.012

F1

NUFTRESNET - - - - - 0.8210.010 - - - - - 0.7560.010

NUFTSPEC - - - - - 0.8020.028 - - - - - 0.6670.023

T2VEC - - - 0.2190.007 - - - - - 0.2520.018 - -
DIRECT 0.8800.006 0.8410.006 0.8450.006 0.8210.002 0.8400.005 0.7540.016 0.8760.004 0.7690.005 0.8380.002 0.6560.009 0.7840.004 0.7120.002

TILE 0.2150.001 0.2260.005 0.2470.015 0.3090.003 0.4470.001 0.3880.004 0.2360.001 0.2120.011 0.2880.012 0.1930.002 0.4390.002 0.3390.018

WRAP 0.8610.003 0.8040.009 0.8030.004 0.7820.002 0.8310.002 0.7800.001 0.8090.004 0.6680.002 0.7520.017 0.5900.021 0.7690.002 0.6130.005

GRID 0.8820.007 0.7280.007 0.7720.002 0.6980.001 0.6400.017 0.5300.150 0.8680.002 0.5880.002 0.6490.049 0.4090.003 0.7490.003 0.4600.077

THEORY 0.9030.015 0.8520.009 0.8550.004 0.8420.012 0.8450.006 0.7410.044 0.8840.017 0.7520.007 0.8120.008 0.6680.009 0.7560.025 0.5370.22

POLY2VEC 0.9280.015 0.9270.032 0.9180.029 0.9010.017 0.8990.016 0.8270.022 0.8920.012 0.8830.014 0.9030.013 0.8770.004 0.8320.003 0.7690.019

17

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

Figure 10: Distance scatters of point-polygon pairs on NewYork dataset for different encoders.

Figure 11: Distance scatters of point-polyline pairs on Singapore dataset for different encoders.

Figure 12: Distance scatters of point-polyline pairs on NewYork dataset for different encoders.

Figure 13: Distance scatters of point-point pairs on Singapore dataset for different encoders.

Figure 14: Distance scatters of point-point pairs on NewYork dataset for different encoders.

when d = 32, POLY2VEC performs the best or only slightly
worse than the best one in both topological and directional
relationship classification. Although POLY2VEC’ perfor-
mance on distance estimation at d = 32 is generally lower
than at d = 16 for most geometry combinations, the drop
is insignificant compared to the improvement at higher d.
Therefore, we choose d = 32 by default.

The learning rate lr. We train POLY2VEC with different

lr in [0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001].
As shown in Tables 12, 13, and 14, POLY2VEC performs
well when lr is between 0.0001 and 0.001. It performs
slightly better at a larger lr (i.e., lr = 0.001) when dealing
with topological relationship classification between complex
geometries, but significantly better at a smaller lr (i.e., lr
= 0.0001) when dealing with directional relationship clas-
sification and distance estimation. We choose lr = 0.0001
by default, and recommend to tune lr between 0.0001 and

18

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

Table 9: Effect of embedding size d on topological relationship classification accuracy. Best performance and default value
are highlighted.

d
Singapore New York

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

16 0.941 0.942 0.817 0.497 0.693 0.942 0.963 0.819 0.621 0.653
32 0.955 0.949 0.812 0.509 0.702 0.953 0.980 0.830 0.641 0.684
64 0.955 0.949 0.812 0.506 0.701 0.952 0.979 0.837 0.636 0.679
128 0.954 0.944 0.811 0.493 0.696 0.951 0.980 0.827 0.639 0.676
256 0.953 0.941 0.810 0.494 0.695 0.951 0.979 0.815 0.640 0.682

Table 10: Effect of embedding size d on directional relationship classification accuracy. Best performance and default value
are highlighted.

d
Singapore New York

point-
point

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

point-
point

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

16 0.908 0.918 0.893 0.906 0.886 0.818 0.908 0.854 0.874 0.804 0.866 0.783
32 0.932 0.935 0.925 0.906 0.907 0.833 0.909 0.891 0.883 0.863 0.876 0.785
64 0.914 0.933 0.893 0.898 0.902 0.841 0.906 0.873 0.875 0.808 0.851 0.778
128 0.922 0.931 0.879 0.892 0.899 0.829 0.894 0.849 0.869 0.813 0.849 0.771
256 0.919 0.928 0.889 0.894 0.896 0.828 0.891 0.866 0.873 0.823 0.856 0.780

Table 11: Effect of embedding size d on distance estimation MAE. Best performance and default value are highlighted.

d
Singapore New York

point-
point

point-
polyline

point-
polygon

point-
point

point-
polyline

point-
polygon

16 0.014 0.042 0.024 0.034 0.047 0.037
32 0.016 0.043 0.029 0.030 0.049 0.042
64 0.021 0.055 0.046 0.031 0.052 0.069
128 0.021 0.060 0.059 0.036 0.061 0.086
256 0.035 0.059 0.079 0.041 0.064 0.099

Table 12: Effect of learning rate lr on topological relationship classification accuracy. Best performance and default value
are highlighted.

lr
Singapore New York

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

0.01 0.498 0.494 0.543 0.249 0.155 0.759 0.897 0.495 0.252 0.165
0.005 0.633 0.570 0.764 0.252 0.165 0.824 0.915 0.731 0.440 0.172
0.001 0.953 0.945 0.811 0.517 0.716 0.949 0.979 0.822 0.673 0.694
0.0005 0.952 0.947 0.790 0.495 0.705 0.947 0.974 0.805 0.646 0.686
0.0001 0.955 0.949 0.812 0.509 0.702 0.953 0.980 0.830 0.641 0.684
0.00005 0.935 0.936 0.804 0.482 0.618 0.951 0.976 0.820 0.566 0.634
0.00001 0.861 0.911 0.772 0.494 0.478 0.864 0.958 0.779 0.547 0.561

19

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

Table 13: Effect of learning rate lr on directional relationship classification accuracy. Best performance and default value
are highlighted.

lr
Singapore New York

point-
point

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

point-
point

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

0.01 0.060 0.061 0.061 0.062 0.062 0.059 0.064 0.062 0.062 0.058 0.059 0.063
0.005 0.747 0.804 0.762 0.817 0.824 0.733 0.782 0.753 0.776 0.702 0.603 0.678
0.001 0.866 0.889 0.872 0.859 0.882 0.836 0.865 0.862 0.882 0.803 0.876 0.791
0.0005 0.880 0.887 0.845 0.883 0.849 0.838 0.883 0.865 0.882 0.818 0.877 0.792
0.0001 0.932 0.935 0.925 0.906 0.907 0.833 0.909 0.891 0.883 0.863 0.876 0.785
0.00005 0.915 0.931 0.886 0.908 0.901 0.827 0.916 0.848 0.855 0.805 0.868 0.766
0.00001 0.852 0.842 0.799 0.834 0.811 0.727 0.826 0.729 0.719 0.655 0.769 0.669

Table 14: Effect of learning rate lr on distance estimation MAE. Best performance and default value are highlighted.

lr
Singapore New York

point-
point

point-
polyline

point-
polygon

point-
point

point-
polyline

point-
polygon

0.01 0.138 0.179 0.235 0.145 0.284 0.322
0.005 0.083 0.092 0.103 0.091 0.101 0.189
0.001 0.026 0.050 0.057 0.047 0.064 0.107
0.0005 0.024 0.062 0.049 0.033 0.066 0.099
0.0001 0.016 0.043 0.029 0.030 0.049 0.042
0.00005 0.032 0.046 0.029 0.044 0.053 0.049
0.00001 0.038 0.044 0.053 0.048 0.064 0.061

Table 15: Effect of W on topological relationship classification accuracy. Best performance and default value are
highlighted.

W
Singapore New York

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

5 0.936 0.926 0.775 0.457 0.663 0.938 0.975 0.797 0.612 0.624
10 0.955 0.949 0.812 0.509 0.702 0.953 0.980 0.830 0.641 0.684
20 0.959 0.961 0.806 0.478 0.676 0.968 0.982 0.846 0.631 0.656
30 0.959 0.954 0.809 0.469 0.668 0.948 0.976 0.829 0.629 0.648

Table 16: Effect of W on directional relationship classification accuracy. Best performance and default value are high-
lighted.

W
Singapore New York

point-
point

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

point-
point

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

5 0.892 0.901 0.875 0.864 0.853 0.802 0.864 0.852 0.862 0.858 0.859 0.763
10 0.932 0.935 0.925 0.906 0.907 0.833 0.909 0.891 0.883 0.863 0.876 0.785
20 0.927 0.924 0.922 0.899 0.886 0.826 0.895 0.882 0.863 0.853 0.866 0.779
30 0.901 0.917 0.905 0.884 0.879 0.818 0.878 0.873 0.849 0.835 0.864 0.772

0.001 if POLY2VEC is applied to other tasks.

The Fourier transform feature size. The Fourier feature

(i.e., magnitude z and phase ϕϕϕ) size is determined by the
fmin, fmax and W . We change the final Fourier transform

20

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

Table 17: Effect of W on distance estimation MAE. Best performance and default value are highlighted.

W
Singapore New York

point-
point

point-
polyline

point-
polygon

point-
point

point-
polyline

point-
polygon

5 0.028 0.056 0.0.41 0.047 0.064 0.058
10 0.016 0.043 0.029 0.030 0.049 0.042
20 0.021 0.049 0.032 0.030 0.054 0.045
30 0.024 0.052 0.031 0.033 0.056 0.049

feature size by varying W in [5, 10, 20, 30], resulting in
[66, 210, 820, 1830] frequencies, respectively. As shown in
Tables 15, 16, and 17, POLY2VEC performs the worst with
few frequencies (i.e., W = 5), while there is no significant
improvement with a large number of frequencies (i.e., W =
20 and W = 30). Therefore, we choose W = 10 by default.

21

