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Abstract—The inherent challenges in recruiting human sub-
jects, particularly infants, often hinder the acquisition of suffi-
ciently large datasets for health research, thereby limiting the
applicability of conventional machine-learning (ML) approaches.
In this study, we analyze full-day motion recordings from two
groups: typically developing infants (N = 12) and infants at
risk for developmental disabilities (N = 24), further divided
into those with good (N = 10) and poor (N = 9) developmental
outcomes at 24 months. The goal is to differentiate at-risk (AR)
infants from those with typical development (TD) and predict
outcomes for the at-risk category using wearable data. Due to its
limited size, previous studies on this dataset, employing statistical
and machine learning methods, raise reliability concerns. To
address this, we introduce a novel algorithmic approach to extract
meaningful patterns, referred to as Motifs, from the raw signals.
The abundance of Motifs serves as highly informative indicators,
enabling effective differentiation between the groups. Evaluation
on this limited-size dataset demonstrates the effectiveness of
Motifs in distinguishing AR from TD infants and predicting
future outcomes for the at-risk category.

Index Terms—infant, neuromotor developmental disabilities,
accelerometer data, motif discovery, matrix profile

I. INTRODUCTION
The widespread integration of wearable devices into health-

care has facilitated the continuous monitoring of patients’
vital signs and activities, presenting a promising alternative to
periodic clinical visits. This approach finds applications across
various domains [1]–[6], including the identification of neu-
rological deficits in infants by measuring high-quality sponta-
neous movement patterns [7]–[9]. However, recruiting human
subjects, particularly infants, is often challenging, resulting
in datasets that may not be sufficiently large. This limitation
restricts the applicability of traditional ML approaches as the
next step, to analyze the collected data.

Typically, infant motor development status analysis relies
on brief observations conducted by trained clinicians using
clinical rating scales like the Alberta Infant Motor Score
(AIMS) [10]. Such methods exhibit several limitations, in-
cluding rater biases, short visit times, and the possibility of
infants exhibiting unexpected behaviors in unfamiliar environ-
ments. Studying infant movements through wearable sensor
data poses its own inherited challenges. Commercial wearable
devices like fitness bands, primarily engineered for adult use,
lack the specificity to capture infant movements, especially
considering the remarkable movement variance exhibited dur-

ing infancy. Additionally, obtaining large datasets is compli-
cated by the need for guardian consent and the allocation
of resources (financial, trained personnel, time) necessary to
collect human subjects’ data from infants. To address the
first challenge, previous research has primarily focused on
extracting and characterizing meaningful features from the
raw signals, followed by statistical analysis [11] or supervised
learning [12]. Yet, the limited number of study participants
raises concerns about the reliability of the reported results.

In this work, we overcome these challenges by introduc-
ing an algorithmic approach that involves extracting mean-
ingful patterns, referred to as Motifs. Our Motif-based ap-
proach offers several advantages over these traditional feature
engineering-based methods. First, by identifying distinct repet-
itive patterns in our raw accelerometer signals, we effectively
mitigate the noisiness of the recorded data while capturing
higher-level information. Second, the abundance of Motifs
forms a repository of interpretable patterns that can aid clini-
cians in identifying specific movement patterns within devel-
opmental groups. For instance, the Motif corresponding to an
infant in a swing is interpretable and serves as a recognizable
pattern to distinguish from infant movements effectively. This
contrasts with features like acceleration norm or peak, which
are challenging to filter out due to their fine-grained nature.
Lastly, our results account for subtle variations that would
otherwise go unnoticed. We show how our approach does
not need any training to yield significant differences across
developmental groups, thus making it ideal for healthcare
applications where obtaining a large number of labeled data is
difficult. By employing a simple time-series nearest-neighbor
approach we reveal significant differences across the Motifs
of typically developing (TD) and at-risk (AR) infants, as
well as between infants with poor (ARp) and good (ARg)
developmental outcomes within the at-risk category. To the
best of our knowledge, this is the first attempt to use Motifs
to compare distinctive patterns in infants with the explicit goal
of predicting developmental disabilities.

II. METHODS
A. Participants & Data Collection

Full-day leg movement data was collected from two groups:
12 infants with typical development and 24 at risk for de-
velopmental disabilities. The dataset for infants with typical



development was initially introduced in [13], [14]. APDM
Opal wearable sensors were placed on the participants’ ankles,
measuring tri-axial acceleration and angular velocity at a
sampling rate of 20 Hz. The participants were monitored for
three days, with two-month intervals between each day, and
wore the sensors until bedtime, resulting in approximately 8 to
13 hours of recorded data. Follow-up communication occurred
when each infant reached 24 months old to determine their de-
velopmental status. Infants with poor developmental outcomes
were identified as those receiving ongoing therapy services,
while infants with good outcomes were those not receiving
physical or occupational therapy. To that extent, this dataset
includes 36 observations of TD infant leg movements and 70
AR infant observations1, while follow-up developmental status
information was obtained for 19 out of 24 AR participants,
resulting in 55 AR infant movement recordings for analysis.

B. Data Preprocessing

To account for variations in sensor placement orientation
among infants, we preprocessed the raw tri-axial signals. The
magnitude of the acceleration vector for each recording was
computed using the formula:

Accelmag =
√
x2 + y2 + z2 (1)

where x, y, and z are the three directional components of
acceleration. This was previously employed and validated
in [13], [14] to detect leg movement occurrences using
thresholding. Moreover, each signal underwent the following
filtering process. First, a 3rd-order low-pass Butterworth filter
was applied at the Nyquist frequency of 1 Hz to diminish high-
frequency components, followed by signal downsampling to
1 Hz to accelerate computations.

C. Scalable Time series Anytime Matrix Profile (STAMP)

We aim to extract recurring patterns from the collected data,
called Motifs [15]. To achieve that, we utilized the Scalable
Time series Anytime Matrix Profile (STAMP) algorithm [16],
[17]. Given a recording T with n data points and a desired
pattern length m, STAMP returns the matrix profile P and
the matrix profile index I , which correspond to the distances
and indices of the best match (or nearest neighbor) for every
subsequence Si of size m in T . This is achieved by sliding a
size window m over T and computing the pairwise euclidean
distances between Si and every other subsequence Sj . It is
worth noting that the algorithm considers trivial matches, such
as self-matches, by applying an exclusion zone of size m/2
before and after the location of each subsequence. This ensures
accurate matching results and avoids redundant matches.

D. Time Series Motif Extraction

Having the profile P and the corresponding indexes I of
each of our recordings, our pipeline moves towards identifying
“meaningful” patterns. Here, we declare a motif meaningful
when its distance to its best match is below a certain threshold.
We define this threshold as follows:

1The data of the third visit of two AR infants were excluded since they
were found to walk independently at the time.

thi = max((µ(Di)− 2σ(Di)),min(Di)) (2)
This indicates that each subsequence Si becomes a candidate
motif if it has at least one match with a distance less or
equal to thi. Note that, thi varies for each subsequence. We
have deliberately made that choice since infant movements
exhibit varying noise levels and variability, and thus, using
an adaptive threshold provides a more flexible solution for
detecting patterns in our data.

Extracting the candidate motifs becomes straightforward
with each entry in P and I corresponding to a subsequence
in T . To that extent, we perform a single scan of the two
vectors and keep the entries that satisfy our constraint. The
remaining entries in I represent the starting points of the
candidate motifs. Subsequently, we rank them in ascending
order based on their distance to their best match and select
the top k. If the number of candidate motifs is less than k, all
are selected. Finally, we group the selected patterns of each
right and left leg recording, resulting in a set of at most 2k
Motifs for each reported session. In the next sections, we refer
to this set as a motif group.

III. RESULTS & DISCUSSION
A. Experimental Setup

We present our results utilizing the pipeline presented in
Section II on our collected infant leg movement recordings.
We choose to extract patterns of different sizes (m) ranging
from 10 to 50 seconds, to account for the wide range and
variability of movements that infants normally exhibit. Finally,
we experimentally set the number of extracted patterns per leg
recording to k = 4. We evaluate our patterns for two distinct
scenarios, presented below.
B. Typically developed vs at-risk infant patterns

Our first goal is to determine whether the extracted Motifs
can indicate an infant at risk of developmental disabilities.
To that extent, we employ the time-series k-nearest-neighbor
classifier (kNN) and set the number of neighbors to 1 and the
metric distance to euclidean distance. This approach allows us
to investigate whether the motifs extracted from each infant
are similar within their respective developmental groups while
exhibiting differences across the groups. For evaluation, we
adopt the Leave-One-Out Cross-Validation (LOOCV) tech-
nique and conduct two distinct experiments. In the first one, we
evaluate the patterns of each recording independently, while
for the second one, we group the Motifs across the three visits,
treating the patterns of each infant as a single group. This
arrangement allows us to investigate whether considering long-
term observations would increase the chances of an AR infant
being detected. For this scenario, our dataset consists of 106
recordings, comprising 36 TD and 70 AR infant observations.

Classification Results. The results, summarized in the left
part of Table I, showcase the accuracy and recall of the
classification model across different motif sizes. The model
effectively can distinguish patterns of various sizes between
the two classes, notably achieving 92% accuracy for m = 50.
This highlights a clear dissimilarity in terms of the distance
between the patterns of the two classes. The scores are



TABLE I: Prediction Accuracy and (Recall) for identifying (i) TD/AR (left) and (ii) ARg/ARp (right) infants using different motif sizes.
The Motifs were evaluated individually for each recording and combined across visits for each infant.

Class TD / AR ARg / ARp

motif size m=10 m=20 m=30 m=40 m=50 m=10 m=20 m=30 m=40 m=50

Individual 0.78 (0.96) 0.82 (0.97) 0.86 (0.97) 0.89 (1.0) 0.92 (1.0) 0.53 (0.67) 0.60 (0.67) 0.63 (0.67) 0.62 (0.67) 0.64 (0.74)
Across Visits 0.81 (0.96) 0.86 (0.96) 0.86 (1.0) 0.94 (1.0) 0.97 (1.0) 0.58 (0.67) 0.58 (0.78) 0.63 (0.67) 0.68 (0.78) 0.74 (0.89)

further improved when the patterns are aggregated across
visits, reaching 97% accuracy for m = 50. This suggests that
extracting Motifs from data collected over multiple sessions is
the most effective approach to assess an infant’s developmental
stage correctly. One possible explanation for this observation
is that incorporating multiple sessions reflects the difference
in the rate of infant development between the two groups.
However, even when gathering such comprehensive data is not
feasible, our results demonstrate that Motifs can still serve as
valuable indicators to detect at-risk infants at an early stage.
Lastly, the high recall achieved by the model (≥ 96%) implies
the absence of false negatives, highlighting the Motifs’ efficacy
as indicators for identifying at-risk infants. This is particularly
important for our goal to support the healthy development of
infants, by enabling early interventions.

Motif Interpretability. We further explore the distinctions
in Motifs between the two groups, as illustrated in Figure 1,
showcasing the three most frequent Motif groups identified
in our analysis. Notably, Motifs associated with typically
developing (TD) infants demonstrate higher acceleration peaks
than those of at-risk (AR) infants. To explore deeper, we
extracted features from the Motifs of each class and conducted
a statistical analysis. Specifically, we calculated the average
minimum, mean, and peak of Motifs’ acceleration, as well as
their average repetition in the recordings from which they were
extracted. Employing the Mann-Whitney U Test to assess the
statistical significance of class differences, Table II presents
the results for a pattern size of m = 50. Motifs of TD infants
exhibit, on average, higher min (p<0.001), peak (p=0.012),
and mean (p<0.001) acceleration compared to AR Motifs.
This aligns with a previous report [11], supporting that TD in-
fants display movements with greater intensity, particularly in
peak acceleration per movement, compared to their AR peers.
Although Motifs in our analysis are not identical to movements
in the previous study, the finding suggests a consistent trend.
We also note that the average repetition of TD patterns is lower
compared to AR peers (p<0.001). This implies that TD infants
tend to exhibit greater variability in their leg movements,
resulting in fewer repeating patterns within the recorded data.
This finding aligns with the results of an exploratory study that
compared the variability of acceleration magnitude between
TD and AR using sample entropy [18].

C. Predicting outcomes for at-risk infants

Our second objective is more ambitious, exploring whether
Motifs can indicate the future developmental outcome of
infants at 24 months of age. For this task, our dataset consists
of 55 recordings, including 27 ARp and 28 ARg infants. We

(a) 3 frequent types of TD Motifs in our recordings.

(b) 3 frequent types of AR Motifs in our recordings.

Fig. 1: Plots illustrate frequent types of (a) TD and (b) AR Motifs.
Instances may vary slightly due to movement or noise, but share a
qualitative similarity.
again employ the kNN classifier and the LOOCV technique
for evaluation, as in the previous section.

Classification Results. We present the classification
model’s accuracy in the right segment of Table I. When
considering each motif group individually, our model achieved
a minimum accuracy of 53% and a recall of at least 67%
(m = 10), reaching 64% and 74% for a pattern size of
m = 50. Our scores significantly improved reaching 74%
accuracy and, notably, 89% recall when aggregating Motifs
from all visits for each infant. Similar to the previous task,
correctly identifying AR infants with poor developmental
outcomes remains a top priority to ensure they receive vital
early care. Considering that infants are typically diagnosed
with developmental disabilities around 24 months of age, our
preliminary findings suggest that gathering longitudinal data
across multiple sessions can contribute to the detection of
developmental disabilities at much earlier ages.

Motif Interpretability. Figure 2 depicts the three most
frequent Motif types identified in both classes. We observe
that infants classified as ARg exhibit more complex patterns
characterized by larger accelerations than ARp infants. The
latter often show simpler patterns, often represented by single
movements. Interestingly, the last motif in Fig.2b resembles
the acceleration magnitude profile of a mechanical swing [13].
It’s worth noting that our pipeline exclusively extracted such
patterns from ARp recordings. We interpret their occurrence
as a potential indicator of prolonged periods of inactivity, and
thus, we have considered their presence in our analysis. To



(a) 3 frequent types of ARg Motifs in our recordings.

(b) 3 frequent types of ARp Motifs in our recordings. The last
motif was described as the movement of a mechanical swing
in [13].

Fig. 2: Plots of (a) ARg and (b) ARp Motifs in our recordings.

TABLE II: Average min, peak, mean acceleration, and repetition of
extracted Motifs for (i) TD/AR and (ii) ARg/ARp classes.

class min acc. peak acc. mean acc. repetition

TD 0.188 6.542 0.752 6.496
AR 0.137 6.171 0.357 11.338

ARg 0.279 6.498 0.479 12.13
ARp 0.047 6.022 0.215 13.15

further examine the Motif differences, we, again, computed the
average minimum, mean, and peak of Motifs’ acceleration, as
well as their average repetition in the recordings for m = 50.
The results are outlined in Table II. Motifs of ARg infants
exhibit higher average acceleration min (p=0.019) and mean
(p=0.023) compared to their ARp peers. The same trend
is observed for the peak acceleration feature, although the
difference is statistically insignificant (p=0.089). Additionally,
the average pattern repetition is lower in ARg than in ARp

infants, but this difference is also statistically insignificant
(p=0.67). To the best of our knowledge, this study represents
an initial attempt to compare specific patterns of at-risk infants
for predicting their developmental outcomes, and therefore,
these findings lack direct comparability with prior research.

IV. CONCLUSION & FUTURE WORK
This work advances prior research in infant movement

monitoring by employing an algorithmic approach based
on Motif extraction. Our analysis required no training to
yield significant differences across the Motifs of infants from
different developmental groups. Typically developing infants
exhibited more complex and variable movement patterns than
at-risk peers, and within the at-risk group, infants with poor
developmental outcomes revealed simpler, singular movement
patterns, in contrast to those with positive outcomes. These
findings showcase the efficacy of Motifs as indicators of
developmental disabilities earlier in infancy, even within a
limited participant pool, presenting an alternative to current

diagnostic tools that often identify such cases late. Future
work involves expanding the dataset size to include more
at-risk infants to comprehensively understand developmental
assessment implications.
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