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Abstract

Recent advances in large foundation models (FMs) have enabled
learning general-purpose representations in natural language, vi-
sion, and audio. Yet geospatial artificial intelligence (GeoAl) still
lacks widely adopted foundation models that generalize across tasks
that require joint reasoning over geospatial objects and human mo-
bility. Such tasks are crucial as mobility, along with satellite imagery,
street view, and text, is a core modality for understanding the phys-
ical world. We argue that a key bottleneck is the absence of unified,
general-purpose, and transferable representations for geospatially
embedded objects (GEOs). Such objects include points, polylines,
and polygons in geographic space, enriched with semantic context
and critical for geospatial reasoning. Much current GeoAl research
compares GEOs to tokens in language models, where patterns of
human movement and spatiotemporal interactions yield contextual
meaning similar to patterns of words in text. However, modeling
GEOs introduces challenges fundamentally different from language,
including spatial continuity, variable scale and resolution, temporal
dynamics, and data sparsity. Moreover, privacy constraints and
global variation in mobility further complicates modeling and gen-
eralization. This paper formalizes these challenges, identifies key
representational gaps, and outlines research directions for building
foundation models that learn behavior-informed, transferable rep-
resentations of GEOs from large-scale human mobility data, as well
as static contextual information such as points of interest, object
shapes and spatio-temporal semantics.
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Figure 1: Pipeline overview for mobility-enriched GEOs: ap-
proach, applications, and modeling considerations.

1 Introduction

Large foundation models have transformed natural language pro-
cessing and computer vision by enabling models to learn contextual,
general-purpose representations of words and images. These mod-
els, trained on vast amounts of publicly available data, can capture
complex semantic and structural relationships and solve a wide
range of downstream tasks with minimal task-specific supervision.
The core idea behind these successes is that of a single model serv-
ing as a flexible backbone for many applications by leveraging
transferable representations [6].

Despite these advances in other domains, GeoAl has yet to see
comparable progress [12, 15, 24, 31, 46]. We argue that a key chal-
lenge lies in learning representations for geospatial objects that
capture their differences in geometry, from points (e.g., business
locations) to polylines (e.g., street segments) to polygons (e.g., build-
ing footprints), as well as their semantic attributes (e.g., building
function). These objects are essential for globally effective geospa-
tial reasoning tasks, such as determining whether a coffee shop is
located within a mall or computing the distance from a point of
interest (POI) to the nearest road. We introduce the term Geospa-
tially Embedded Objects (GEOs) to refer to these entities: points,
polylines and polygons situated in geographic space, enriched with
semantic context, that are integral to spatial reasoning.

The analogy to language is intuitive: just as words derive mean-
ing from their context within sentences, GEOs can gain contextual
meaning from patterns of human movement over time, with se-
quences of interactions with GEOs resembling sentences [9]. This
analogy has motivated efforts to apply LLMs to learn GEO em-
beddings from trajectories [32, 33]. However, the analogy breaks
down in practice: language-based techniques struggle to capture the
unique characteristics of GEOs. Unlike words, GEOs are embedded
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in continuous space, vary in scale, exhibit complex temporal dynam-
ics, and are visited sparsely and unevenly. Additionally, modeling
GEOs introduces distinct challenges, such as privacy concerns in
mobility data and limited generalizability across cities due to differ-
ences in urban structure and movement patterns. These differences
call for rethinking existing modeling paradigms and developing new
approaches specifically designed for the geospatial domain.

In this paper, we outline a vision for GEO-centric foundation
models. We decompose the end-to-end modeling pipeline and ana-
lyze unique challenges for which existing language-based methods
fall short. We also highlight key considerations, including privacy,
transferability, and interpretability, that are essential for building
robust, general-purpose representations of GEOs.

2 Unique Modeling Challenges
2.1 Mobility-to-GEO Attribution

The first step in learning mobility-enhanced representations of
GEOs includes converting raw GPS traces into sequences of geospa-
tial objects, a process we call GEO attribution. This step identifies
which GEOs (e.g., POIs, roads, or neighborhoods) are visited, passed
by, or generally associated with a given trip. Conceptually, GEO
attribution loosely parallels tokenization in NLP, where raw in-
put is segmented into discrete tokens. However, unlike language,
where tokens are well-defined and drawn from a fixed vocabulary,
geospatial “tokens” must be inferred from continuous spatial traces.

Mapping GPS points to GEOs is an ambiguous, dynamic, and
task-specific process. GPS data is often noisy or imprecise, making
it difficult to determine which GEOs are truly relevant to a trip.
Yet, even with clean trajectories, attribution poses several modeling
challenges. For example: Should we include only explicitly visited
GEOs, or also those merely passed nearby? This decision has impor-
tant implications. Including too many nearby but irrelevant GEOs
could lead to over-attribution, while failing to capture brief but
meaningful stops could result in under-attribution (e.g., missing a
transit hub due to short dwell time).

Even the attribution methods themselves vary widely. For in-
stance, map matching align GPS points to road networks [34] while
POI attribution attempts to associate visits based on spatial and tem-
poral cues. For the latter, existing methods rely mostly on heuristics
such as fixed dwell-time thresholds, nearest-neighbor assignments,
and spatial buffers, which constrain accuracy [35, 36, 40]. The chal-
lenges increase when GEOs serve multifunctional roles (e.g., a
transit hub that is also a shopping center), or when semantic impor-
tance outweighs proximity; for example, GPS points recorded near
a university may be closest to coffee shops and adjacent amenities,
yet a longer dwell time suggests the visit should be attributed to the
campus [37]. Lastly, unlike deterministic tokenization in language,
GEO attribution is context-dependent, as the same trajectory may
yield different GEOs depending on whether the goal is routing
or behavior analysis. All these challenges make GEO attribution
an inherently uncertain and ill-defined problem, that needs to be
solved to enable effective GEO representation learning.

2.2 GEO Encoding

Once GEOs have been identified, the next step is to convert them
into fixed-length vectors suitable for downstream learning tasks.
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This step, formally referred to as encoding, is loosely analogous to
word embedding in NLP, where models like Word2Vec [30] capture
semantic similarity based on co-occurrence in text. However, GEO
encoding is significantly more complex due to the multimodal na-
ture of geospatial data. GEOs are defined not only by their location
in space, but also by their functional roles (e.g., serving as a school
or a hospital) and by temporal patterns of interaction, such as when
and how frequently they are visited. These diverse attributes must
be jointly captured to produce representations that are both mean-
ingful and generalizable. The remainder of this section discusses the
challenges and representative methods for encoding GEOs along
these three key dimensions: spatial, contextual, and temporal.

2.2.1 Spatial Dimension. Spatial characteristics are central to the
identity of GEOs and must be explicitly preserved in their represen-
tations. However, encoding spatial data presents unique challenges.
First, encoders must support heterogeneous geometries, includ-
ing points, polylines, and polygons. Most existing approaches have
focused on point geometries [25], with comparatively limited atten-
tion given to polylines and polygons [27, 47]. Although geospatial
objects can be converted into alternative formats like images or
text to fit standard machine learning pipelines [5, 7, 8, 18, 45], such
transformations often discard critical spatial information, such as
the object’s exact position in space, which can degrade performance
on downstream tasks. Recent efforts like Poly2Vec [39] represent
early progress toward a unified encoding framework that preserves
spatial characteristics across diverse geometry types.

Second, geospatial data spans multiple spatial scales, from
neighborhoods to cities and regions, requiring representations that
remain robust across varying resolutions. To that extent, some
methods operate on a fixed grid scale based on task assumptions
(e.g., zip code level prediction) [1, 48], while others adopt hierar-
chical schemes to encode information across multiple levels [8, 19].
These approaches remain sensitive to grid design and often fail to
generalize across scales. Multi-scale encoders offer more flexibility,
but current designs are limited to point geometries [26].

Third, spatial encoders should capture a rich set of spatial prop-
erties. While most existing methods primarily focus on distance-
based proximity [16, 18], they should also capture topological (e.g.,
adjacency, containment) and directional relationships as well as
structural characteristics, such as the curvature of a road or the
footprint complexity of a region. These properties are essential
for enabling geospatial reasoning tasks that go beyond proximity,
such as identifying whether a building lies within a hazard zone,
or determining whether two roads are connected. Despite their
importance, such properties are rarely captured or evaluated in
existing pipelines [39]. Addressing these gaps calls for encoders
that unify geometry types, support continuous spatial input, and
capture rich relational and structural properties.

2.2.2  Contextual Dimension. GEOs are often associated with rich
contextual information that provides semantic grounding beyond
geometry alone. This includes object level functional roles and
categories, such as determining if a GEO is a hospital, a residential
building, or a main road, as well as geometry-specific metadata, like
the number of floors of a building or traffic volume. These features,
often sourced from OpenStreetMap, government records, or remote
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sensing, are essential for understanding a GEO’s role and should
be embedded directly into its representation [5, 11, 19, 23].

Context also extends to the neighborhood level, where features
such as the distribution of nearby POI types capture a GEO’s func-
tional role within its broader environment. Some studies aggregate
neighborhood features using fixed-radius buffers [19, 42], spatial at-
tention mechanisms [8, 26] or graph-based approaches [13, 44, 49].
These signals are crucial for capturing urban structure, functional
zoning, and patterns of human activity.

Despite their importance, semantic attributes are often treated
as standalone metadata, appended to GEO’s representation without
modeling their interaction with the object’s geometry. This limits
models ability to capture how meaning arises from the interplay
between spatial features and semantics. A key challenge is to de-
sign representations that reflect this interdependence. While a few
studies explore joint learning between geometry and semantics [5],
approaches that explicitly model these relationships remain limited.

2.2.3 Temporal Dimension. In LLMs, sequential dependencies are
captured using position encodings that assume uniformly spaced,
discrete tokens [41]. A similar strategy can be applied to GEOs by
ordering them based on the time they were visited, providing an
initial temporal context. However, visit order alone is insufficient to
capture the rich temporal semantics of GEOs, particularly because
the meaning of GEOs can change over time. For instance, a single
location might function as a coffee shop in the morning and transi-
tion into a bar at night, reflecting distinct roles at different times of
day. This suggests that GEO representations should be dynamic,
adapting to temporal context inferred from mobility data.

Designing such temporally adaptive representations remains
an open challenge. While most prior work focuses on modeling
trajectories as temporal sequences [14, 20, 22], relatively little at-
tention has been paid to how the semantics of individual GEOs
evolve over time. This raises a fundamental questions: Should a
single GEO have multiple representations that vary across time? And
if so, what should the temporal granularity of these representations
be? Temporal behaviors in human mobility are often multi-scale,
making it unclear how fine-grained these representations should be
and how to aggregate them effectively. Answering these questions
is critical for building models that treat time as an integral part of
GEO representation, rather than as an auxiliary input.

2.3 The Vocabulary Challenge

With GEOs identified and encoded, the subsequent challenge is to
determine their representation for effective learning. In LLMs, each
word or subword token is assigned a discrete ID from a fixed vocab-
ulary, typically around 128k tokens in size [3, 29]. While the specific
tokenization technique matters, the decision principles are clear.
One might think that we can similarly assign a unique identifier
to each GEO, and learn a corresponding embedding. However, the
space of possible objects on the map, is orders of magnitude larger,
with hundreds of millions of locations worldwide, and follows an
extremely long-tailed distribution. This is further complicated by
the fact that some GEOs are frequently visited (e.g., airports, road
segments), while others are rarely or never re-visited (e.g., private
homes), leading to severe data sparsity for unique identifiers.
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Representing each GEO with a dedicated embedding is both
computationally prohibitive and will yield poor generalization in
data-sparse regions with few visitation patterns. More fundamen-
tally, fixed vocabularies contrast with the continuous nature of
geographic space, where new or rarely visited locations are con-
stantly encountered. Some recent methods attempt to bypass dis-
crete identifiers by embedding raw spatial and temporal signals di-
rectly [20, 51], or by learning higher-level clusters to represent fine-
grained spatial locations within graph neural networks, thereby
improving scalability [43]. These initial attempts, though useful,
are limited to specific GEOs and downstream tasks, thereby not
fully capturing the complexity of geospatial semantics. This raises
a fundamental question for mobility-based GEO modeling: How
can ‘we construct representations for a vast, sparse, and continuously
evolving set of GEOs without relying on predefined vocabularies?

2.4 Hard(er) Constraints

Unlike language, where any token can, in principle, appear in any
position, modeling GEOs through mobility poses fundamental real-
world constraints that must be respected to generate realistic rep-
resentations. We discuss some of these these constraints below.

2.4.1  Accessibility and Reachability. Not all GEOs in a mobility
sequence are equally accessible or reachable; a GPS trace cannot
be arbitrarily associated with any GEO [21]. Physical access re-
strictions (e.g., private buildings, gated facilities), transportation
constraints, and temporal feasibility (e.g., whether a location can
be reached within a given time window) all affect which GEOs are
plausible candidates. For example, a university campus may require
an access pass, or a remote trailhead may be inaccessible without
a vehicle. These constraints create a non-uniform feasibility land-
scape over geographic space, requiring models to reason not only
about the locations a trajectory has visited, but also about which
locations were realistically reachable given physical and temporal,
and transportation mode constraints.

24.2  Capacity and Spatiotemporal Density Limits. Every GEO has
intrinsic limits on how many agents can physically occupy or in-
teract with it over space and time. A concert venue, for instance,
cannot accommodate unlimited attendees regardless of demand.
Similarly, a multi-story office tower can support far more occu-
pants than a small neighborhood park, even if both have similar
ground-level footprints. These capacity constraints are not merely
operational considerations; they are fundamental semantic proper-
ties that influence how a GEO functions. Failing to account for these
constraints can lead models to inaccurately assume that a GEO can
support more activity than is physically or operationally feasible,
resulting in unrealistic outputs in tasks such as demand forecasting,
crowd simulation, or mobility prediction. Accurate GEO represen-
tations must therefore account for spatiotemporal density limits to
support meaningful and physically plausible inference.

3 Potential Impact

We envision GEO representations serving as a fundamental layer for
geospatial foundation models (GEOFMs), enabling a wide range of
applications across domains, which we group into three categories:
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(1) Object-centric tasks involve reasoning about individual
GEOs and their attributes. Examples include improving maps qual-
ity [9], like detecting missing or mislabeled POIs, inferring building
functions from mobility patterns, identifying access points to large
venues (e.g., stadium entrances), and correcting road connectivity
errors (e.g., missing links, wrong one-way assignments). Another
example is decision support, which includes recommending op-
timal locations for new businesses based on visitation patterns,
estimating the capacity of facilities (e.g., determining parking space
capacity), and assisting drivers with context-aware navigation, such
as detecting likely entrances or drop-off points near a destination.

(2) Mobility-centric tasks involve understanding and optimiz-
ing movement patterns across space and time. Applications include
dynamic traffic management based on real-time mobility data [38],
optimizing delivery and service routes, forecasting logistics demand,
analyzing commuter flows for transit planning, and identifying mo-
bility bottlenecks or under-served areas in transportation networks.

(3) Population-level tasks involve aggregating GEO repre-
sentations across users, time, and space to uncover macro-scale
patterns. Applications include assessing mobility equity, identify-
ing tourist activity patterns, estimating demand for public services
such as healthcare or transit, monitoring urban growth and land
use change [44, 49], detecting disruptions during large events or
disasters [4, 50], and informing long-term decisions for infrastruc-
ture investment and public service allocation. By learning struc-
tured, multi-scale representations of space, time, and function, Ge-
oFMs could unify these capabilities within a single, general-purpose
framework.

4 Orthogonal Considerations

4.1 Privacy

Privacy concerns are critical for GEO representation learning, given
the reliance on human mobility data. Individual trajectories, even
when anonymized, can often be re-identified through spatio-temporal
modeling, posing risks of unintended disclosure. This is especially
concerning when handling sensitive locations like private homes,
hospitals, and places of worship. Unlike NLP tokens, which are ab-
stract and generally unrelated to individuals, GEOs are grounded in
real-world entities and often reflect personal routines. These risks
raise an important design question: Should certain classes of GEOs,
such as private residences, be represented at all? While including
them may improve coverage, it not only introduces serious privacy
vulnerabilities but also offers limited value for general-purpose
tasks. Responsible representation learning may therefore require
filtering, abstracting, or omitting sensitive GEOs altogether, along-
side the use of privacy-preserving techniques such as differential
privacy [2, 17] or federated learning to enable decentralized model
training without sharing raw trajectory data across devices [28].
Balancing representational utility with ethical safeguards is essen-
tial for deploying trustworthy GeoFMs in practice.

4.2 Cross Region Transferability

Publicly available mobility data are typically restricted to specific
geographic areas and narrow time spans, making it difficult to
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obtain comprehensive, large-scale coverage for training. As a re-
sult, GEO representations learned from such data risk being overly
specialized to the regions and time periods they were derived from.

Cross-region transferability is a core requirement for general-
purpose GeoFMs. But transferring representations across regions is
challenging due to substantial variation in mobility behavior, land
use, and spatial semantics [10, 23, 50]. For example, the distribution
of POIs, transportation modes, and urban density in Tokyo differs
significantly from that in Los Angeles. Therefore, models trained
on region-specific patterns may fail to generalize to areas with
different structural or behavioral dynamics.

To support such transferability, GEO representations must go be-
yond encoding region-specific mobility patterns. They should also
encode spatial priors that capture differences in urban form (e.g.,
density, land use, connectivity), scale (e.g., city vs. neighborhood),
and mobility modality (e.g., walking vs. driving), and that can adapt
to distributional shifts both in the physical layout of geographic
space and in the mobility behaviors associated with it.

4.3 Interpretability

As GEO representations grow in dimensionality, they get harder
to understand. Yet interpretability remains essential, especially
in high-stakes domains such as urban planning, transportation,
and public policy, where stakeholders must be able to understand
and justify spatial decisions or model-driven recommendations. In
language modeling, word embeddings have been shown to align
with interpretable semantic axes, such as gender, tense, or country-
capital relationships. Similarly, GEO embeddings should aim to
reveal dimensions that correspond to meaningful spatio-temporal
and contextual attributes [12], but this level of interpretability re-
mains largely underexplored in current research.

Improving interpretability in GEO representations may benefit
from techniques adapted from language models. For example, em-
bedding probes can be repurposed to test whether GEO embeddings
capture meaningful attributes such as accessibility or population
density. Overall, this is a promising direction for building more
transparent and accountable GeoFMs, particularly in applications
where explainable decision-making is critical.

5 Conclusion

In this paper, we introduced GEOs as a unifying abstraction for
representing geospatial objects and outlined the core challenges in
learning their representations across spatial, contextual, and tem-
poral dimensions. We highlighted the unique technical difficulties
of modeling GEOs using human mobility data, including issues
like sparsity, scale, transferability, privacy and interpretability. We
also explained why GEOs require fundamentally different modeling
assumptions than language tokens. We argue that GEOs represent a
critical building block for general-purpose GeoFMs, and achieving
this goal requires collaborative efforts from the community.
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